
00 - Title page	
	
	
Linked Archival Metadata: A Guidebook	
	
 draft Draft Draft! Draft!!! DRAFT!!! D R A F T ! ! ! 	
 	
--	
LiAM & Eric L. Morgan	
http://sites.tufts.edu/liam/	
	
March 6, 2014 �

1. Executive Summary	
	
[The Executive Summary will list core objectives, anticipated outcomes, and implications that will provide
administrators or other senior leaders with the information that they will need in order to understand the
benefits and potential costs of this path.]	
	
�

2. Introduction	
	
This is a travel guide — a set of itineraries for getting from here to linked data and the Semantic Web.
It outlines the sorts of things you may want to know if you want to get from here to someplace else. There
are many ways to get there. None of them are perfect. Each of them have their own particular strengths &
weaknesses, opportunities & impediments. If you want to go on this journey at a cost of, say, $10 per day,
then there are a number of options for you. If you want to spend $25 dollars per day, then a number of
other options available. If you want to spend as much as $50 day, then there are quite a number of other
options. This guide book will use this metaphor throughout the text so you can evaluate your options. 	

For all intents and contexts, linked data and linked open data are synonymous, but the subtle difference
does need to be discussed. Linked open data is a qualification of linked data. Linked open data comes
with an explicit license agreement denoting how the accessible data can be “freely” used. In this
case, the words “free” and “open” are analogous to free “open source software”. Just as open source
software is available for use and re-use, linked open data is free for use and re-use. Attribution needs
to be made. The data can be freely used. While copyrights may still be in place when it comes to linked
open data, the copyrights allow for the use, re-use, and re-distribution. The intent of linked open data
is to use the content in ways that it canb e used in many ways for many purposes. While the distinction
between linked data and linked open data are may be large in the eyes of some people, for simplicities
sake, the phrase linked data is synonymous with linked open data, even though some feel the distinction
needs to be delineated to a greater degree.	

Implementing linked data represents a different, more modern way of accomplishing some of the same goals
of archival science. It is a process of making more people aware of your content. It is not the only way
to make more people aware, but it represents a way that will be wide spread, thorough, and complete.	
	
Linked Archival Metadata: A Guidebook provides archivists with an overview of the current linked data
landscape, define basic concepts, identify practical strategies for adoption, and emphasize the tangible
payoffs for archives implementing linked data. It focuses on clarifying why archives and archival users
can benefit from linked data and will identify a graduated approach to applying linked data methods to
archival description.	
	
The Guidebook is a product of the Linked Archival Metadata planning project (LiAM), led by the Digital
Collections and Archives at Tufts University and funded by the Institute of Museum and Library Services
(IMLS). LiAM’s goals include defining use cases for linked data in archives and providing a roadmap to
describe options for archivists intending to share their description using linked data techniques.	
�

02.a How to use the Guidebook	
	
The structure of the Guidebook supports readers moving through the text in a variety of ways. Like a
travel book, it provides useful high-level information for users who only need the basics, as well as
in-depth information for those planning an extended stay in LOD-land. The Guidebook is intentionally
named, and will draw from the genre of actual travel guides (Fodors, etc.) providing readers easy access
to both high-level information (know before you go, what to see if you’re only there for a day) as well as
in-depth details of for those staying in one place longer.	
	
Synopses of the use cases developed by the LiAM project will be interspersed throughout the Guidebook to
illustrate and frame the text. Each use case will be briefly described in 100-200 words with links to the
full use cases on the LiAM website.	
	
An initial release of the Guidebook will be in the form of a PDF document to be delivered to IMLS in
fulfillment of the LiAM planning grant requirements as well as being shared with the public. However, the
Guidebook’s ongoing vitality will benefit from a more dynamic publication environment, and we therefore
plan to publish it in a wiki connected to a code repository. This combination will enable updating of the
resource to reflect changes in the field as well as providing a mechanism for sharing tools, scripts, and
other code related to the project.	
	
Much of the rest of the Guidebook, while providing a concise overview of today’s linked data landscape and
needs, would require ongoing updates, maintenance, and enhancement to describe implementation of LOD in
the archival community over time.	
	
�

3.a. Objectives: management, access, and use and linked data affordances	
	
[Management, access, and use and linked data affordances]	
	
	
�

2.a Use cases	
	
 What can you do with linked data once it is created? Here are three use cases:	
	
1. Do simple publishing - At its very root, linked data is about making your data available for others to
harvest and use. While the “killer linked data application” has seemingly not reared its head, this does
not mean you ought not make your data available at linked data. You won’t see the benefits immediately,
but sooner or later (less than 5 years from now), you will see your content creeping into the search
results of Internet indexes, into the work of both computational humanists and scientists, and into the
hands of esoteric hackers creating one-off applications. Internet search engines will create “knowledge
graphs”, and they will include links to your content. The humanists and scientists will operate on your
data similarly. Both will create visualizations illustrating trends. They will both quantifiably analyze
your content looking for patterns and anomalies. Both will probably create network diagrams demonstrating
the flow and interconnection of knowledge and ideas through time and space. The humanist might do all this
in order to bring history to life or demonstrate how one writer influenced another. The scientist might
study ways to efficiently store your data, easily move it around the Internet, or connect it with data set
created by their apparatus. The hacker (those are the good guys) will create flashy-looking applications
that many will think are weird and useless, but the applications will demonstrate how the technology can
be exploited. These applications will inspire others, be here one day and gone the next, and over time,
become more useful and sophisticated.  	
	
2. Create a union catalog - If you make your data available as linked data, and if you find at least one
other archive who is making their data available as linked data, then you can find a third somebody who
will combine them into a triple store and implement a rudimentary SPARQL interface against the union. Once
this is done a researcher could conceivably search the interface for a URI to see what is in both
collections. The absolute imperative key to success for this to work is the judicious inclusion of URIs in
both data sets. This scenario becomes even more enticing with the inclusion of two additional things.
First, the more collections in the triple store the better. You can not have enough collections in the
store. Second, the scenario will be even more enticing when each archive publishes their data using
similar ontologies as everybody else. Success does not hinge on similar ontologies, but success is
significantly enhanced. Just like the relational databases of today, nobody will be expected to query them
using their native query language (SQL or SPARQL). Instead the interfaces will be much more user-friendly.
The properties of classes in ontologies will become facets for searching and browsing. Free text as well
as fielded searching via drop-down menus will become available. As time goes on and things mature, the
output from these interfaces will be increasingly informative, easy-to-read, and computable. This means
the output will answer questions, be visually appealing, as well as be available in one or more formats
for other computer programs to operate upon.  	
	
3. Tell a story - You and your hosting institution(s) have something significant to offer. It is not just
about you and your archive but also about libraries, museums, the local municipality, etc. As a whole you
are a local geographic entity. You represent something significant with a story to tell. Combine your
linked data with the linked data of others in your immediate area. The ontologies will be a total
hodgepodge, at least at first. Now provide a search engine against the result. Maybe you begin with local
libraries or museums. If you work in an academic setting, then maybe you begin with other academic
departments across campus. Allow people to search the interface and bring together the content of
everybody involved. Do not just provide lists of links in search results, but instead create knowledge
graphs. Supplement the output of search results with the linked data from Wikipedia, Flickr, etc. In a
federated search sort of way, supplement the output with content from other data feeds such as (licensed)
bibliographic indexes or content harvested from OAI-PMH repositories. Identify complementary content from
further afield. Figure out a way for you and they to work together to create a newer, more complete set of
content. Creating these sorts of things on-the-fly will be challenging. On the other hand, you might
implement something that is more iterative and less immediate, but more thorough and curated if you were
to select a topic or theme of interest, and do your own searching and story telling. The result would be
something that is at once a Web page, a document designed for printing, or something importable into
another computer program. 	
	
4. Create new knowledge - Create an inference engine, turn it against your triple store, and look for

relationships between distinct sets of URIs that weren't previously apparent. Here's one way how: 	
	
 1. allow the reader to select an actionable URI of personal	
 interest, ideally a URI from the set of URIs you curate	
	
 2. submit it an HTTP server or SPARQL endpoint and request RDF as	
 output	
	
 3. save the output to a local store	
	
 4. for each subject and object URI found the output, go to	
 Step #2	
	
 5. go to step #2 n times for each newly harvested URI in the store	
 where n is a reader-defined integer greater than 1; in other	
 words, harvest more and more URIs, predicates, and literals	
 based on the previously harvested URIs	
	
 6. create a set of human readable services/reports against the	
 content of the store, and think of these services/reports akin to	
 finding aids, reference materials, or museum exhibits of the	
 future: Example services/reports might include:	
	
 * hierarchal lists of all classes and properties - This	
 would be a sort of semantic map. Each item on the map	
 would be clickable allowing the reader to read more and	
 drill down.	
	
 * text mining reports - collect into a single "bag of	
 words" all the literals saved in the store and create:	
 word clouds, alphabetical lists, concordances,	
 bibliographies, directories, gazetteers, tabulations of	
 parts of speech, named entities, sentiment analyses,	
 topic models, etc.	
	
 * maps - use place names and geographic coordinates to	
 implement a geographic information service	
	
 * audio-visual mash-ups - bring together all the media	
 information and create things like slideshows, movies,	
 analyses of colors, shapes, patterns, etc.	
	
 * search interfaces - implement a search interface	
 against the result, SPARQL or otherwise	
	
 * facts - remember SPARQL queries can return more than	
 just lists. They can return mathematical results such	
 as sums, ratios, standard deviations, etc. It can also	
 return Boolean values helpful in answering yes/no	
 questions. You could have a set of canned fact queries	
 such as, how many ontologies are represented in the	
 store. Is the number of ontologies greater than 3? Are	
 there more than 100 names represented in this set? The	
 count of languages used in the set, etc.	
	
 7. Allow the reader to identify a new URI of personal interest,	
 specifically one garnered from the reports generated in Step #5.	

	
 8. Go to Step #2, but this time have the inference engine be more	
 selective by having it try to crawl back to your namespace and	
 set of locally curated URIs.	
	
 9. Return to the reader the URIs identified in Step #7, and by	
 consequence, these URIs ought to share some of the same	
 characteristics as the very first URI; you have implemented a	
 "find more like this one" tool. You, as curator of the collection	
 of URIs might have thought the relations between the first URI	
 and set of final URIs was obvious, but those relationships would	
 not necessarily be obvious to the reader, and therefore new	
 knowledge would have been created or brought to light.	
	
 10. If there are no new URIs from Step #7, then go to Step #6	
 using the newly harvested content.	
	
 11. Done - if a system were created such as the one above, then	
 the reader would quite likely have acquired some new knowledge,	
 and this would be especially true the greater the size of n in	
 Step #5. 	
	
	
	
	
	
�

2.a Why linked data, and why now?	
	
Linked data, or more recently referred to as “linked open data” for reasons to be explained later, is a
proposed technique for generating new knowledge. It is intended to be a synergy between people and sets of
agreed upon computer systems that when combined will enable both people and computers to discover and
build relationships between seemingly disparate data and information to create and discover new knowledge.	
	
In a nutshell, this is how it works. People possess data and information. They encode that data and
information in any number of formats easily readable by computers. They then make the encoded data and
information available on the Web. Computers are then employed to systematically harvested the encoded
data. Since the data is easily readable, the computers store the data locally and look for similarly
encoded things in other locally stored data sets. When similar items are identified relationships can be
inferred between the items as well as the other items in the data set. To people, some of these
relationships may seem obvious and “old hat”. On the other hand, since the data sets can be massive,
relationships that were never observed previously may come to light, thus new knowledge is created.	
	
Some of this knowledge may be trivial. For example, there might be a data set of places -- places from all
over the world including things like geographic coordinates, histories of the places, images, etc. There
might be another data set of poeple. Each person may be described using their name, their place of birth,
and a short biography. These data sets may contain ten’s of thousands of items each. Using linked data it
would be possible to cross reference the people with the places to discover who might have met whom when
and where. Some people may have similar ideas, and those ideas may have been generated in a particular
place. Linked data may help in discovering who was in the same place at the same time and the researcher
may be better able to figure out how a particular idea came to fruition. 	
	
Here’s an example hitting closer to the home of archives and archivists. Suppose most archival finding
aids were written in a format easily readable by computers. Let’s call this format Encoded Archival
Description. Let’s suppose these finding aids were made available on the Web. Let’s suppose one or more
computers crawled these archival sites harvesting the finding aids. Once done a computer program could be
used to find all the occurrences of particular name and generate a virtual finding aid that is more
complete and more comprehensible than any single finding aid on that particular person. 	
	
The amount of data and information accessible today is greater in size than it has ever been in human
history. Using our traditional techniques of reading, re-reading, writing, discussing, etc. is more than
possible to learn new things about the state of the world, the universe, and the human condition. By
exploiting the current state of computer technology is possible to expand upon our traditional techniques
and possibly accelerate the mass of knowledge. 	
�

2.a Benefits	
	
Linked data makes the content of archival collections more accessible and open doors for new types of
service.	
	
Archives are about collecting, organizing, preserving, and disseminating original, unique, and primary
literature. These are the whats of archival practice, but the hows of archival practice evolve with the
changing technology. With the advent of ubiquitous networked computing, people’s expectations regarding
access to information and knowledge have changed significantly. Unless institutions like archives change
with the times, then the needs previously filled by archives will be filled by other institutions. Linked
data is a how of archival practice, and it is one of those changes behooving archives to adopt. It is a
standards-based technique for making data and information available on the Web. It is rooted in the very
fabric of the Web and therefore is not beholden to any particular constituency. It is a long lasting
standard and practice that will last as long as the hypertext transfer protocol is operational.	
	
Making archival descriptions and collection available via linked data will increase the use of those
descriptions and collections. It is a form of benign advertising. Commercial search engines will harvest
the linked data content and make it available it their search engines. Search engines will return hits to
your descriptions and collections driving traffic to you and your site. Digital humanists will harvest
your content, perform analysis against it, and create new knowledge or bring hidden knowledge to light.
Computer scientist will collect your data, amalgamate it with the data of others, and discover
relationship previously unconceived.	
	
You can divide your combined collections and services into two tangible parts: 1) the collections
themselves, and 2) the metadata describing them. It is usually possible to digitize your collections, but
the result is rarely 100% satisfactory. Digitization is almost always a useful surrogate not a complete
replacement. In this way, your collections as physical objects will always be a draw to all types of
learners and researchers. The metadata, on the other hand, is 100% digitizable, and therefore lends itself
very well to dissemination on the Internet. Linked data represents one way to make this happen. 	
	
Few archival collections are 100% complete. There are always pieces missing, and some of those missing
pieced will be owned by others. Your collections will have relationship with other collection, but you
will not have direct access to those other collections. Some of these relationships are explicit. Some of
them are implicit. If everybody were to expose their metadata then those explicit and implicit
relationships can become more apparent. Once these relationships are strengthened and become more obvious,
interest in the collections will increase accordingly, and the collections will be used to a greater
degree. With this increased use will come increased attention, and in turn, a greater measure of success
for the collections and services it provides. �

From: Ingrid Mason <ingrid.b.mason@gmail.com>	
Subject: Re: [LODLAM] quick benefits to hosting instutitions	
Date: January 22, 2014 at 9:49:47 PM EST	
To: lod-lam@googlegroups.com	
Reply-To: lod-lam@googlegroups.com	
	
Hi Jody,	
	
If I understand correctly, you're keen to find examples of value generated. I'll give this a whirl... and
see if I'm being helpful. 	
	
Converting data that already exists, >> providing a data service that a user community seeks to reuse and
contribute to (access value). 	
	
PeopleAustralia (National Library of Australia) provides permanent, resolvable unique identifiers that
link to records about parties, i.e. people or organisations. The authority file at the Library already
had, was reused. This data source was enhanced as a result of ANDS funding to identify parties that
manage or own research data collections. You'll see that this has increased the capacity for discovery
(through collaboration with other data providers). Key contact: Tim Sherratt @wragge 	
	
Collaborating with custodians of primary material (collection managers), using third party data (Dbpedia),
and finding, identifying and linking entities in the data >> brought to light information that was
previously unknown (research value).	
	
LinkedJazz at the Pratt Institute. Finalist in the LODLAM 2013 summit award along with some other folks
(for being generally super clever with LOD things). Key contact: Cristina Patuelli @cristinapattuel 	
	
Providing insights into the links in your own data >> improve data quality (data value). 	
	
Check out Chris McDowall's post on linking data in digitalNZ. @fogonwater 	
	
There are other kinds of value in all that. Guess benefits depend on what the strategic goals of the
organisation are, and what the research community needs in terms of access. 	
	
Hope that helps?	
	
Ingrid 	
	
	
On 23 January 2014 12:55, Jody DeRidder <jody@jodyderidder.com> wrote:	
Hi --	
 I'm looking for selling points for utilizing linked data, for the institutions creating it. I would
appreciate being pointed towards demos that show how particular tools can be utilized to provide improved
access and use of local content for which linked data exists -- particularly with regards to primary
source materials which have been digitized.	
Without the "benefits" side of the equation, it's difficult to make a case for the "costs" part of the
work, fascinating as it may be.	
Suggestions? Please feel free to contact me off list. 	
Thanks!	
Jody L. DeRidder  Head, Digital Services  University of Alabama Libraries  Tuscaloosa, AL 35487  Phone:
205.348.0511   "Hope lies in dreams, in imagination, and in the courage of those who dare to make dreams into
reality."  --Jonas Salk  	
�

3. Linked Data for Archives: a Primer (done)	
	
Linked Data is a process for manifesting the ideas behind the Semantic Web. The Semantic Web is about
encoding data, information, and knowledge in computer-readable fashions, making these encodings accessible
on the World Wide Web, allowing computers to crawl the encodings, and finally, employing reasoning engines
against them for the purpose of discovering and creating new knowledge. The following section are a primer
to the principles and practices of linked data. 	
	
�

3.c. Brief overview of the history of LOD-LAM (done)	
	
The history of linked data in libraries, archives, and museums is rooted in history of the Semantic Web.	
	
The canonical article describing the Semantic Web was written by Tim Berners-Lee, James Hendler, and Ora
Lassila in 2001. [1] The article described the concept of the Semantic Web -- an environment where
Internet-wide information was freely available for both people and computers to access with the ultimate
purpose of bringing new knowledge to light. At that time, to implement the ideas behind the Semantic Web,
many people created RDF/XML files side-by-side with their HTML and saved them on Web servers. Around this
same time the idea of "Web services" and REST-ful computing were beginning to be articulated by the
Internet community. Simply put, Web services and REST-ful computing are/were a way for computers to
request and share information over the World Wide Web. Web services and REST-ful computing became popular
because just about anybody can do it. All you usually have to do is submit a very long URL plus numerous
variable/value pairs to a Web server, and the Web server returns some data. Many computer programmers and
people who could write HTML quickly picked up on this idea, and it became popular. Besides, no Semantic
Web "killer application" had been demonstrated to the wider Internet community, and many computer
technologists thought RDF/XML was a poor way of serializing RDF. The idea of the Semantic Web faded for a
few years.	
	
In 2006 Berners-Lee more concretely described how to make the Semantic Web a reality in a text called
“Linked Data -- Design Issues”. [2] It it he advocated a four-step process for making content freely
available on the Web. He also advocated for simple URLs to be used to describe things. At this same time
additional RDF serializations were becoming popular; RDF/XML was no longer the only way to express RDF.
Also a few entrepreneurial individuals were also beginning to provide software services for creating,
maintaining, and distributing RDF. These developments, plus the kinship of "all things open" (open source
software, open access publishing, open data, etc.) with the fundamental goals of the Semantic Web,
probably led to the current interest in linked data. Since then an increasing number of specialized
communities have expressed and demonstrated interest in linked data. Linked data technologies are
maturing.	
	
[1] canonical article - http://www.scientificamerican.com/article/the-semantic-web/	
[2] design issues - http://www.w3.org/DesignIssues/LinkedData.html	
	
�

3.b. Overview of linked data concepts and vocabulary (done)	
	
Linked data is a standardized process for publishing and disseminating information via the Web. It
represents the current "how" behind the ideas the Semantic Web.	
	
Increasingly you will hear of of linked data being qualified as "linked open data". The "open" qualifier
alludes to the important distinctions between truly free data/information and licensed data/information
coming with strings attached. Truly "open" linked data comes with no financial restrictions or
restrictions on use, but there may very well be attribution requirements.	
	
When you hear of linked data and the Semantic Web, the next thing you often hear is "RDF" or "Resource
Description Framework". First and foremost, RDF is a way of representing knowledge. It does this through
the use of assertions (think, "sentences") with only three parts: 1) a subject, 2) a predicate, and 3) an
object. Put together, these three things create things called "triples". The subject of each assertion is
expected to be a Universal Resource Identifier (or URI, but think URL), and this URI is expected to
represent a thing -- anything. The predicate is some sort of relationship such as equals or is a sub-part
of or contains or is a description of, or is the name of, etc. Predicates are the vocabulary of linked
data, and you will find an abundance of vocabularies from which to choose when creating linked data.
Finally, objects come in two forms: 1) more URIs (pointers to things) or literal values such the names of
people, places, or things. Examples of literals include "Lancaster, PA", "Thomas Jefferson", or "Musée
d'Orsay".	
	
RDF is not to be confused with RDF/XML or any other type of RDF "serialization". Remember, RDF describes
triples, but it does not specify how the triples are express or written down. On the other hand, RDF/XML
is an XML syntax for expressing RDF. Some people think RDF/XML is too complicated and too verbose.
Consequently, other serializations have manifested themselves including N3 and Turtle.	
	
In “Linked Data -- Design Issues” Berners-Lee outlined four often-quoted expectations for implementing the
Semantic Web. Each of these expectations are listed below along with some elaborations:	
	
 * "Use URIs as names for things" - URIs (Universal Resource	
 Identifiers) are unique identifiers, and they are expected to	
 have the same shape as URLs (Universal Resource Locators). These	
 identifiers are expected to represent things such as people,	
 places, institutions, concepts, books, etc. URIs are monikers or	
 handles for real world or imaginary objects.  	
	
 * "Use HTTP URIs so that people can look up those names." - The	
 URIs are expected to look and ideally function on the World Wide	
 Web through the Hypertext Transfer Protocol (HTTP), meaning the	
 URI's point to things on Web servers.  	
	
 * "When someone looks up a URI, provide useful information, using	
 the standards (RDF, SPARQL)" - When URIs are sent to Web servers	
 by Web browsers (or "user-agents" in HTTP parlance), the response	
 from the server should be in a conventional, computer readable	
 format. This format is usually a "serialization" of RDF (Resource	
 Description Framework) -- a notation looking much like a	
 rudimentary sentence composed of a subject, predicate, and	
 object.  	
	
 * "Include links to other URIs. So that they can discover more	
 things." - Simply put, try very hard to use URIs other people	
 have have used. This way the relationships you create can	
 literally be linked to the relationships other people have	
 created. These links may represent new knowledge. 	
	

In the same text Berners-Lee also outlined a sort of reward system -- a sets of stars -- for levels of
implementation. This reward system also works very well as a strategy for publishing linked data by
cultural heritage institutions such as archives. A person gets:	
	
 * one star for making data available on the web (in whatever	
 format) but with an open license	
	
 * two stars for making the data machine-readable and structured	
 data (e.g. Excel instead of an image scan of a table)  	
	
 * three stars for making the data available in a	
 non-proprietary format (e.g. comma-separated values instead of	
 Excel)  	
	
 * four stars for using open standards from W3C (RDF and SPARQL)	
 to identify things, so that people can point at your stuff  	
	
 * five stars for linking your data to other people's data to	
 provide context	
	
The whole idea works like this. Suppose I assert the following statement:	
	
 The Declaration Of Independence was authored by Thomas Jefferson.	
 	
This statement can be divided into three parts. The first part is a subject (Declaration Of Independence).
The second part is a predicate (was authored by). The third part is an object (Thomas Jefferson). In the
language of the Semantic Web and linked data, these combined parts are called a triple, and they are
expected to denote a fact. Triples are the heart of RDF. 	
	
Suppose further that the subject and object of the triple are identified using URIs (as in Expectations #1
and #2, above). This would turn our assertion into something like this with carriage returns added for
readability:	
	
 http://en.wikipedia.org/wiki/Declaration_of_Independence	
 was authored by	
 http://www.worldcat.org/identities/lccn-n79-89957	
	
Unfortunately, this assertion is not easily read by a computer. Believe it or not, something like the XML
below is much more amenable, and if it were the sort of content returned by a Web server to a Web browser
(read "user-agent"), then it would satisfy Expectations #3 and #4 because the notation is standardized and
because it points to other people's content:	
	
<?xml version="1.0"?>	
<rdf:RDF	
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"	
 xmlns:dcterms="http://purl.org/dc/terms/" >	
 <!-- the Declaration Of Independence was authored by Thomas Jefferson -->	
 <rdf:Description	
 rdf:about="http://en.wikipedia.org/wiki/Declaration_of_Independence">	
 <dcterms:creator>http://id.loc.gov/authorities/names/n79089957</dcterms:creator>	
 </rdf:Description>	
</rdf:RDF>	
	
Suppose we had a second assertion:	
	
 Thomas Jefferson was a man.	
	

In this case, the subject is "Thomas Jefferson". The predicate is "was". The object is "man". This
assertion can be expressed in a more computer-readable fashion like this:	
	
<?xml version="1.0"?>	
<rdf:RDF	
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"	
 xmlns:foaf="http://xmlns.com/foaf/0.1/">	
 <!-- Thomas Jefferson is man (a male) -->	
 <rdf:Description rdf:about="http://id.loc.gov/authorities/names/n7908995">	
 <foaf:Person foaf:gender="male" />	
 </rdf:Description>	
</rdf:RDF>	
	
Suppose there were smart linked data robot/spider. Suppose it crawled both Assertion #1 and Assertion #2.
It then ought to be able to assert the following:	
	
<?xml version="1.0"?>	
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/">	
 <!-- the Declaration Of Independence was written by	
 Thomas Jefferson, and Thomas Jefferson is a male -->	
 <rdf:Description rdf:about="http://en.wikipedia.org/wiki/Declaration_of_Independence">	
 <dcterms:creator>	
 <foaf:Person rdf:about="http://id.loc.gov/authorities/names/n79089957">	
 <foaf:gender>male</foaf:gender>	
 </foaf:Person>	
 </dcterms:creator>	
 </rdf:Description>	
</rdf:RDF>	
	
Looking at the two assertions, a reasonable person can deduce a third assertion, namely, the Declaration
Of Independence was authored by a man. Which brings us back to the point of the Semantic Web and linked
data. If everybody uses URIs (read "URLs") to describe things, if everybody denotes relationships (through
the use of predicates) between URIs, if everybody makes their data available on the Web in standardized
formats, and if everybody uses similar URIs, then new knowledge can be deduced from the original
relationships.	
	
Unfortunately too little linked data has been made available and/or too few people have earned too few
stars to really make the Semantic Web a reality. True, there are a growing number of value-added services
and collections making use of linked data, but not so many that everybody is taking notice.	
	
The purpose of this guidebook is to provide means for archivists to do their part, make their content
available on the Semantic Web through Linked Data, all in the hopes of facilitating the discovery of new
knowledge. On our mark. Get set. Go!	
�

3.a. Ontologies and vocabularies	
	
RDF and linked data is about making relationships between things. These relationships are denoted in the
predicates of RDF triples, and the relationships are defined in ontologies. Ontologies are akin to the
language of RDF, and this section enumerates and outlines some of the more useful and interesting
ontologies for archival (and cultural heritage institution) description.	
	
Probably one of the more difficult intellectual tasks you will have when it comes to making your content
available as linked data will be the selection of one or more ontologies used to make your RDF. Probably
the easiest -- but not the most precise -- way to think about ontologies is as if they were fields in a
MARC record or an EAD file. Such an analogy is useful, but not 100% correct. Probably the best way to
think of the ontologies is as if they were verbs in a sentence denoting relationships between things —
subjects and objects. A very interesting read on the subject of ontology selection and archival
description are a couple of blog postings from the LOHAC blogs. [1]	
	
But if ontologies are sets of “verbs”, then they are akin to human language, and human language is
ambiguous. Therein lies the difficulty with ontologies. There is no “right” way to implement them.
Instead, there is only best or common practice. There are no hard and fast rules. Everything comes with a
bit of interpretation. The application and use of ontologies is very much like the application and use of
written language in general. In order for written language to work well two equally important things need
to happen. First, the writer needs to be able to write. They need to be able to choose the most
appropriate language for their intended audience. Shakespeare is not “right” with his descriptions of
love, but instead his descriptions of love (and many other human emotions) resinate with a very large
number of people. Second, written language requires the reader to have a particular adeptness as well.
Shakespeare can not be expected to write one thing and communicate to everybody. The reader needs to
understand English, or the translation from English into another language needs to be compete and
accurate. 	
	
The Internet, by design, is a decentralized environment. There are very few rules on how it is expected to
be used. To a great extent it relies on sets of behavior that are more common practice as opposed to
articulated rules. For example, what “rules” exist for tweets on Twitter? What rules exist for Facebook or
blog postings. Creating sets of rules will not fly on the Internet because there is no over-arching
governing body to enforce any rules. Sure, there are things like Dublin Core with their definitions, but
those definitions are left to interpretation, and there are no judges nor courts nor laws determining
whether or not any particular application of Dublin Core is “correct”. Only the common use of Dublin Core
is correct, and its use is not set in stone. 	
	
There are no “should’s” on the Internet. There is only common practice. 	
	
With this in mind, it is best for you to work with others both inside and outside your discipline to
select one or more ontologies to be used in your linked data. Do not think about this too long nor too
hard. It is an never-ending process that is never correct. It is only a process that approximates the best
solution. 	
	
 For simplicity's sake, RDF ontologies are akin to the fields in MARC records or the entities in EAD/XML
files. Articulated more accurately, they are the things denoting relationships between subjects and
objects in RDF triples. In this light, they are akin to the verbs in all but the most simplistic of
sentences. But if they are akin to verbs, then they bring with them all of the nuance and subtlety of
human written language. And human written language, in order to be an effective human communications
device, comes with two equally important prerequisites: 1) a writer who can speak to an intended audience,
and 2) a reader with a certain level of intelligence. A writer who does not use the language of the
intended audience speaks to few, and a reader who does not "bring something to the party" goes away with
little understanding. Because the effectiveness of every writer is not perfect, and because not every
reader comes to the party with a certain level of understanding, written language is imperfect. Similarly,
the ontologies of linked data are imperfect. There are no perfect ontologies nor absolutely correct uses
of them. There are only best practices and common usages.	
	

While some or all of these ontologies may be useful for linked data of archival descriptions, what might
some other ontologies include? (Remember, it is often "better" to select existing ontologies rather than
inventing, unless there is something distinctly unique about a particular domain.) For example, how about
an ontology denoting times? Or how about one for places? FOAF is good for people, but what about
organizations or institutions?	
	
This being the case, ontologies still need to be selected in order for linked data to be manifested. What
ontologies would you suggest be used when creating linked data for archival descriptions? Here are a few
possibilities, listed in no priority order:	
	
 * Archival Collections Ontology (http://gslis.simmons.edu/archival/arch/) - Authored by Aaron
Rubinstiens...	
	
 * Bibframe (http://bibframe.org) - The Bibliographic Framework Initiative (BIBFRAME) is an undertaking
by the Library of Congress and the community to better accommodate future needs of the library community.
A major focus of the initiative will be to determine a transition path for the MARC 21 exchange format to
more Web based, Linked Data standards. Zepheira and The Library of Congress are working together to
develop a Linked Data model, vocabulary and enabling tools / services for supporting this Initiative.	
	
 * Dublin Core Terms (http://dublincore.org/documents/dcmi-terms/) - This ontology is rather
bibliographic in nature, and provides a decent framework for describing much of the content of archival
descriptions.	
	
 * Europeneana (http://ontogenealogy.com/europeana-data-model-edm/) - Another approach is to the data
model from other oganizations. Since Europeneana’s data is intended to be available as linked data, then
it might be a good model to explore — http://pro.europeana.eu/edm-documentation Specifically: For the
archival community, collection level descriptions such as EAD play a major role.They fit neatly under the
EDM,in particular the notion of ore:aggregration allows for describing archival “fonds”. The International
Council of Archives just started the discussion about a common conceptual model similar to FRBR or the
CRM. In the meanwhile, with the CRM historical facts associated with archival contents can be described in
more detail than just on the EDM level (Stasinopoulou et. al. 2007). Further, collection-level
descriptions in Dublin Core are quite convenient and becoming popular for archival descriptions. — 	
	
 * FOAF (http://www.foaf-project.org/) - Archival collections often originate from individual people.
Such is the scope of FOAF, and FOAF is used by a number of other sets of linked data. * Friend of a
Friend () - 	
	
 * Getty Vocabularies (http://vocab.getty.edu) - 	
	
 * LOCAH RDF Vocabulary (http://data.archiveshub.ac.uk/def/) - 	
	
 * LOV (http://lov.okfn.org/dataset/lov/) - Look for vocabularies at Linked Open Vocabularies (LOV) — 	
	
 * OAD Vocabulary - (http://labs.regesta.com/progettoReload/wp-content/uploads/2013/08/oadNew.html) -
"[Google translation] The definition of an ontology of archival description is needed in order to test the
potential of the web of data to archival descriptions. The archival description aims at the representation
of a unit of description by collecting, analyzing, organizing and recording the information needed to
identify, manage, locate and explain the context and documentary material and the storage systems that
produced (ISAD (G)). The ontology of archival description (SRO) has as its goal the formal representation
of the descriptions of the individual units of description - understood as objects of their archival
descriptions. In particular, the SRO waiver to take into account all the individual elements of these
descriptions, in endless variations they present as part of the archival systems in which they are hinged,
but instead seeks only to explain the elements of information deemed necessary for the exposure the web of
data units of archival description to ensure integration with other datasets published also in format
Linked Open Data. SROs, in beta, is expressed in OWL (Ontology Web Language): it takes into account all
the elements of archival description in the standard ISAD (G): general international standard archival
description, adopted by the ICA (International Council on Archives) integrating them with other

information elements not covered by the standard mentioned - as the index entries - and with links to
creators and conservative. The formal mechanisms provided by the standard RDF and OWL have made it
possible to bring the information elements of archival descriptions expressed in an ontology SROs to
"external" concepts representative of traditional archival descriptive and based on the international
standard ISAD (G). Since the experiments conducted by the partners of the project ReLoad had as object
data encoded on the basis of the framework EAD (Encoded Archival Description), the ontology provides for a
specific class OAD "eadElement" designed to encode the information on the element or attribute of the EAD
scheme used by the organization that provides data archival description, which is also attributed to the
ISAD (G) on the basis of official mapping ISAD (G) - EAD 	
	
 * OWL (http://www.w3.org/2001/sw/wiki/OWL) - 	
 	
 * PROV (http://www.w3.org/TR/prov-overview/) - for provenance information.	
	
 * RDF - This ontology is necessary because linked data is manifested as... RDF	
	
 * RDFS (http://www.w3.org/TR/rdf-schema/) - This ontology may be necessary because the archival
community may be creating some of its own ontologies.	
	
 * Schema.org (http://schema.org) - This is an up-and-coming ontology heralded by the 600-pound gorillas
in the room -- Google, Microsoft, Yahoo, etc. While the ontology has not been put into practice for very
long, it is growing and wide ranging.	
	
 * SKOS (http://www.w3.org/2004/02/skos/) - Both of these ontologies seem to be used to denote
relationships between terms in other ontologies. In this way they are used to create classification
schemes and thesauri. For example, they allow the implementor to that "creator" in one ontology is the
same as "author" in another ontology. Or they allow "country" in one ontology to be denoted as a parent
geographic term for "city" in another ontology. 	
	
 * VoID (http://semanticweb.org/wiki/VoID) - 	
	
	
[1] LOHAC blog postings, parts #1 and #2 -
http://archiveshub.ac.uk/locah/2011/03/describing-the-things-the-rdf-terms-used-part-1/  ,
http://archiveshub.ac.uk/locah/2011/03/describing-the-things-the-rdf-terms-used-part-2/	
	
�

3.b RDF serializations (done)	
	
RDF can be expressed in many different formats, called "serializations". 	
	
RDF (Resource Description Framework) is a conceptual data model made up of "sentences" called triples —
subjects, predicates, and objects. Subjects are expected to be URIs. Objects are expected to be URIs or
string literals (think words, phrases, or numbers). Predicates are "verbs" establishing relationships
between the subjects and the objects. Each triple is intended to denote a specific fact.	
	
When the idea of the Semantic Web was first articulated XML was the predominant data structure of the
time. It was seen as a way to encapsulate data that was both readable by humans as well as computers. Like
any data structure, XML has both its advantages as well as disadvantages. On one hand it is easy to
determine whether or not XML files are well-formed, meaning they are syntactically correct. Given a DTD,
or better yet, an XML schema, it is also easy to determine whether or not an XML file is valid — meaning
does it contain the necessary XML elements, attributes, and are they arranged and used in the agreed upon
manner. XML also lends itself to transformations into other plain text documents through the generic,
platform-independent, XSLT (Extensible Stylesheet Language Transformation) process. Consequently, RDF was
originally manifested — made real and "serialized" — though the use of RDF/XML.	
	
The example of RDF at the beginning of the Guidebook was an RDF/XML serialization:	
	
<?xml version="1.0"?>	
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/">	
 <rdf:Description rdf:about="http://en.wikipedia.org/wiki/Declaration_of_Independence">	
 <dcterms:creator>	
 <foaf:Person rdf:about="http://id.loc.gov/authorities/names/n79089957">	
 <foaf:gender>male</foaf:gender>	
 </foaf:Person>	
 </dcterms:creator>	
 </rdf:Description>	
</rdf:RDF>	
	
On the other hand, XML, almost by definition, is verbose. Element names are expected to be human-readable
and meaningful, not obtuse nor opaque. The judicious use of special characters (&, <, >, ", and ') as well
as entities only adds to the difficulty of actually reading XML. Consequently, almost from the very
beginning people thought RDF/XML was not the best way to express RDF, and since then a number of other
syntaxes — serializations — have manifested themselves.	
	
Below is the same RDF serialized in a format called Notation 3 (N3), which is very human readable, but not
extraordinarily structured enough for computer processing. It incorporates the use of a line-based data
structure called N-Triples used to denote the triples themselves:	
	
@prefix foaf: <http://xmlns.com/foaf/0.1/>.	
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.	
@prefix dcterms: <http://purl.org/dc/terms/>.	
<http://en.wikipedia.org/wiki/Declaration_of_Independence> dcterms:creator
<http://id.loc.gov/authorities/names/n79089957>.	
<http://id.loc.gov/authorities/names/n79089957> a foaf:Person;	
	 foaf:gender "male".	
	
JSON (JavaScript Object Notation) is a popular data structure inherent to the use of JavaScript and Web
browsers, and RDF can be expressed in a JSON format as well:	
	
{	
 "http://en.wikipedia.org/wiki/Declaration_of_Independence": {	
 "http://purl.org/dc/terms/creator": [

 {	
 "type": "uri", 	
 "value": "http://id.loc.gov/authorities/names/n79089957"	
 }	
]	
 }, 	
 "http://id.loc.gov/authorities/names/n79089957": {	
 "http://xmlns.com/foaf/0.1/gender": [
 {	
 "type": "literal", 	
 "value": "male"	
 }	
], 	
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": [
 {	
 "type": "uri", 	
 "value": "http://xmlns.com/foaf/0.1/Person"	
 }	
]	
 }	
}	
	
Just about the newest RDF serialization is an embellishment of JSON called JSON-LD. Compare & contrasts
the serialization below to the one above:	
	
{	
 "@graph": [
 {	
 "@id": "http://en.wikipedia.org/wiki/Declaration_of_Independence",	
 "http://purl.org/dc/terms/creator": {	
 "@id": "http://id.loc.gov/authorities/names/n79089957"	
 }	
 },	
 {	
 "@id": "http://id.loc.gov/authorities/names/n79089957",	
 "@type": "http://xmlns.com/foaf/0.1/Person",	
 "http://xmlns.com/foaf/0.1/gender": "male"	
 }	
]	
}	
	
RDFa represents a way of expressing RDF embedded in HTML, and here is such an expression:	
	
<div xmlns="http://www.w3.org/1999/xhtml"	
 prefix="	
 foaf: http://xmlns.com/foaf/0.1/	
 rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#	
 dcterms: http://purl.org/dc/terms/	
 rdfs: http://www.w3.org/2000/01/rdf-schema#"	
 >	
 <div typeof="rdfs:Resource" about="http://en.wikipedia.org/wiki/Declaration_of_Independence">	
 <div rel="dcterms:creator">	
 <div typeof="foaf:Person" about="http://id.loc.gov/authorities/names/n79089957">	
 <div property="foaf:gender" content="male"></div>	
 </div>	
 </div>	
 </div>	

</div>	
	
The purpose of publishing linked data is to make RDF triples easily accessible. This does not necessarily
mean the transformation of EAD or MARC into RDF/XML, but rather making accessible the statements of RDF
within the context of the reader. In this case, the reader may be a human or some sort of computer
program. Each serialization has its own strengths and weaknesses. Ideally an archive will have figure out
ways exploit each of the RDF serializations for specific publishing purposes.	
	
For a good time, play with the RDF Translator which will convert one RDF serialization into another. [1] 	
	
The RDF serialization process also highlights how data structures are moving away from a document-centric
models to a statement-central models. This too has consequences for way cultural heritage institutions,
like archives, think about exposing their metadata, but that is the topic of another essay.	
	
[1] RDF Translator - http://rdf-translator.appspot.com	
	
	
�

03.g Glossary - This is a beginner's glossary to linked data. (done)	
	
 * API - (see application programmer interface)	
	
 * application programmer interface (API) - an abstracted set of functions and commands used to get
output from remote computer applications. These functions and commands are not necessarily tied to any
specific programming language and therefore allow programmers to use a programming language of their
choice.	
	
 * cool URL - a relatively short, human-readable pointer to Internet accessible content. Cool URLs are
expected to be constant, in that they don't change. Additionally and in general, cool URLs do not include
question marks (?) nor name/value pairs denoting queries.	
 	
 * content negotiation - a process whereby a user-agent and HTTP server mutually decide what data format
will be exchanged during an HTTP request. In the world of linked data, content negotiation is very
important when URIs are requested because content negotiation helps determine whether or not HTML or
serialized RDF will be returned.	
	
 * extensible markup language (XML) - a standardized data structure made up of a minimum of rules and can
be easily used to represent everything from tiny bits of data to long narrative texts. XML is designed to
be read my people as well as computers, but because of this it is often considered verbose, and
ironically, difficult to read.  	
 	
 * file transfer protocol (FTP) -  A Internet standard for copying files from one Internet host to
another.	
	
 * FTP - (see file transfer protocol)  	
	
 * HTML - (see hypertext markup language) 	
	
 * HTTP - (see hypertext transfer protocol)  	
	
 * hypertext markup language (HTML) - an XML-like data structure intended to be rendered by user-agents
whose output is for people to read. For the most part, HTML is used to markup text and denote a text's
stylistic characteristics such as headers, paragraphs, and list items. It is also used do markup the
hypertext links (URLs) between documents.	
	
 * hypertext transfer protocol (HTTP) - the formal name for the way the World Wide Web operates. It
begins with one computer program (a user-agent) requesting content from another computer program (a
server) and getting back a response. Once received, the response is formatted for reading or for
processing by a computer program. The shape and content of both the request and the response are what
make-up the protocol. 	
	
 * Javascript object notation (JSON) - like XML, a data structure allowing arbitrarily large sets of
values to be associated with an arbitrarily large set of names (variables). JSON was first natively
implemented as a part of the Javascript computer language, but has since become popular in other computer
languages as well.	
	
 * JSON - (see Javascript object notation)	
	
 * linked data - the content and technical process for making real the ideas behind the Semantic Web. It
begins with the creation of serialized RDF and making the serialization available via HTTP. User agents
are then expected to harvest the RDF, combine it with other harvested RDF, and ideally use it to bring to
light new or existing relationships between real world objects -- people, places, and things -- thus
creating and enhancing human knowledge. 	
	
 * linked open data - a qualification of linked data whereby the information being exchanged is expected

to be "free" as in gratis.  	
	
 * OAI - (see Open Archives Initiative-Protocol for Metadata Harvesting)  	
	
 * ontology - a highly structured vocabulary, and in the parlance of linked data, used to denote,
describe, relate, and qualify the predicates of RDF triples. Ontologies have been defined for a very wide
range of human domains, everything from bibliography (Dublin Core or MODS), to people (FOAF), to sounds
(Audio Features).  	
	
 * Open Archives Initiative-Protocol for Metadata Harvesting (OAI-PMH) - a metadata publishing standard
consisting of a set commands whereby information is listed, requested, and exchanged between two computers
in the Internet. OAI-PMH is complementary to the principles and practices of linked data.	
	
 * RDF - (see resource description framework)	
	
 * representational state transfer (REST) - a process for querying remote HTTP servers and getting back
computer-readable results. The process usually employs denoting name-value pairs in a URL and getting back
something like XML or JSON. 	
	
 * resource description framework - the conceptual model for describing the knowledge of the Semantic
Web. It is rooted in the notion of triples whose subjects and objects are literally linked with other
triples through the use of URIs.	
	
 * REST - (see representational state transfer)	
	
 * Semantic Web - an idea articulated by Tim Berners Lee whereby human knowledge is expressed in a
computer-readable fashion and made available via HTTP so computers can harvest it and bring to light new
information or knowledge.	
	
 * serialization - a manifestation of RDF; one of any number of textual expressions of RDF triples.
Examples include but are not limited to RDF/XML, RDFa, N3, and JSON-LD.	
	
 * SPARQL - (see SPARQL protocol and RDF query language) 	
	
 * SPARQL protocol and RDF query language (SPARQL) - a formal specification for querying and returning
results from RDF triple stores. It looks and operates very much like the structured query language (SQL)
of relational databases complete with its SELECT, WHERE, and ORDER BY clauses.	
	
 * triple - the atomistic facts making up RDF. Each fact is akin to a rudimentary sentence with three
parts: 1) subject, 2) predicate, and 3) object. Subjects are expected to be URIs. Ideally, objects are
URIs as well, but can also be literals (words, phrases, or numbers). Predicates are akin to the verbs in a
sentence and they denote a relationship between the subject and object. Predicates are expected to be a
member of a formalized ontology.	
	
 * triple store - a database of RDF triples usually accessible via SPARQL	
	
 * universal resource identifier (URI) - a unique pointer to a real-world object or a description of an
object. In the parlance of linked data, URIs are expected to have the same shape and function as URLs, and
if they do, then the URIs are often described as "actionable". 	
	
 * universal resource locator (URL) - an address denoting the location of something on the Internet.
These addresses usually specify a protocol (like http), a host (or computer) where the protocol is
implemented, and a path (directory and file) specifying where on the computer the item of interest
resides. 	
	
 * URI - (see universal resource identifier)  	
	

 * URL - (see universal resource locator)  	
 	
 * user agent - this is the formal name for what is commonly called a "Web browser", but Web browsers
usually denote applications where people are viewing the results. User agents are usually "Web browsers"
whose readers are computer programs.  	
	
 * XML - (see extensible markup language)	
	
For a more complete and exhaustive glossary, see the W3C's Linked Data Glossary. [1]	
	
[1] W3C's Linked Data Glossary - http://www.w3.org/TR/ld-glossary/	
	
�

4. Linked Data Today	
	
�

4.a. Projects: Brief descriptions with an emphasis on tangible benefits and outcomes of each	
	
While the number of linked data websites is less than the worldwide total number, it is really not
possible to list every linked data project but only things that will presently useful to the archivist and
computer technologist working in cultural heritage institutions. And even then the list of sites will not
be complete. Instead, listed below are a number of websites of interest today.	
	
The list is divided into three parts: introductions, data sets, and "projects". The introductions are are
akin to directories or initial guilds. The data sets are collections of RDF available for harvesting. The
projects have used content in data sets to provide value-added information services. 	
	
	
Introductions	
	
 * Datahub (http://datahub.io/) - This is a directory of data sets. It includes descriptions of hundreds
of data collections. Some of them are linked data sets. Some of them are not. 	
 	
 * LODLAM (http://lodlam.net/) - LODLAM is an acronym for Linked Open Data in Libraries Archives and
Museums. LODLAM.net is community, both virtual and real, of linked data aficionados in cultural heritage
institutions. It, like OpenGLAM, is a good place to discuss linked data in general.	
 	
 * OpenGLAM http://openglam.org) - GLAM is an acronym for Galleries, Libraries, Archives, and Museums.
OpenGLAM is a community fostered by the Open Knowledge Foundation and a place to to discuss linked data
that is "free". for It, like LODLAM, is a good place to discuss linked data in general.	
	
 * Datahub (http://datahub.io/) - the free, powerful data management platform from the Open Knowledge
Foundation	
	
	
Data sets	
	
 * D2R Server for the CIA Factbook (http://wifo5-03.informatik.uni-mannheim.de/factbook/) - The content
of the World Fact Book distributed as linked data.	
	
 * D2R Server for the Gutenberg Project (http://wifo5-03.informatik.uni-mannheim.de/gutendata/) - This is
a data set of Project Gutenburgh content -- a list of digitized public domain works, mostly books.	
 	
 * Getty Vocabularies (http://vocab.getty.edu) - A set of data sets used to "categorize, describe, and
index cultural heritage objects and information". 	
 	
 * Library of Congress Linked Data Service (http://id.loc.gov/) - A set of data sets used for
bibliographic classification: subjects, names, genres, formats, etc.	
 	
 * Linked Archives Hub Test Dataset (http://data.archiveshub.ac.uk) - The data set is RDF generated from
a selection of archival finding aids harvested by the Archives Hub in the United Kingdom.	
	
 * Linked Movie Data Base (http://linkedmdb.org/) - A data set of movie information.	
 	
 * Linked Open Data at Europeana (http://pro.europeana.eu/datasets) - A growing set of RDF generated from
the descriptions of content in Europeana. 	
 	
 * Linked Open Vocabularies (http://lov.okfn.org/dataset/lov/) - A linked data set of linked data sets.	
 	
 * New York Times (http://data.nytimes.com/) - A list of New York Times subject headings.	
 	
 * OCLC Data Sets & Services (http://www.oclc.org/data/) - Here you will find a number of freely
available bibliographic data sets and services. Some are available as RDF and linked data. Others are Web

services. 	
	
 * PELAGIOS (http://pelagios-project.blogspot.com/p/about-pelagios.html) - A data set of ancient places.	
 	
 * VIAF (http://viaf.org/) - This data set functions as a name authority file.	
 	
 * Wiki.dbpedia.org (http://dbpedia.org/About) - In the simplest terms, this is the content of Wikipedia
made accessible as RDF. 	
 	
 * World Bank Linked Data (http://worldbank.270a.info/.html) - A data set of World Bank indicators,
climate change information, finances, etc. 	
	
	
Projects	
	
 * 20th Century Press Archives (http://zbw.eu/beta/p20) - "I’ve (Neubert Joachim <J.Neubert@zbw.eu>)
published the persons and company part of the 20th Century Press Archives (http://zbw.eu/beta/p20) as a
linked data application. It uses RDFa and OAI-ORE extensively to give every dossier, every article and
every page a citable URI, and on the other hand consumes linked data from various linked data sources to
enrich the web pages and to provide context to the rather plain scanned article images. See
http://challenge.semanticweb.org/submissions/swc2010_submission_6.pdf for more detail."	
	
 * Linking Lives (http://archiveshub.ac.uk/linkinglives/) - Linking Lives is exploring ways to present
Linked Data. We aim to show that archives can benefit from being presented as a part of the diverse data
sources on the Web to create full biographical pictures, enabling researchers to make connections between
people and events. Linking Lives builds upon the Locah project. Locah was a JISC-funded project to expose
the Archives Hub descriptions as Linked Data.	
	
 * LOCAH Project (http://archiveshub.ac.uk/locah/) - Mimas and UKOLN worked together on an exciting JISC
funded project to make Archives Hub data available as structured Linked Data, for the benefit of education
and research. We worked in partnership with Eduserv, Talis and OCLC, leading experts within their fields.
The aim was put archival and bibliographic data at the heart of the Linked Data Web, enabling new links to
be made between diverse content sources and enabling the free and flexible exploration of data so that
researchers can make new connections between subjects, people, organisations and places to reveal more
about our history and society.	
	
 * OpenCat (http://demo.cubicweb.org/opencatfresnes/) - Another common theme / application demonstrated
at the conference were variations of the venerable library catalog. OpenCat, presented by Agnes Simon
(Bibliothéque Nationale de France), was an additional example of this trend. Combining authority data
(available as RDF) provided by the National Library of France with works of a second library (Fresnes
Public Library), the OpenCat prototype provides quite an interesting interface to library holdings.	
	
 * ReLoad (http://labs.regesta.com/progettoReload/en) - an Italian experimentation started in 2012 and
supported by Central State Archive, Cultural Heritage Institute of Emilia Romagna Region and regesta.exe,
published the first version of OAD ontology (ontology for archival description) based on ISAD (G) standard
and EAD schema, in 2013. The project team define a specific ontology for archival description domain
because there isn't yet something useful to describe all significant classes and properties necessary in
archival description and we integrated OAD with other "Lightweight ontologies" (like foaf or dublin core)
to encode the most common metadata. Within Reload project, to describe authority records in Linked Data we
use EAC-CPF ontology, published in 2012 by Cultural Heritage Institute of Emilia Romagna Region. From the
website: "The ReLoad project (Repository for Linked open archival data) will foster experimentation with
the technology and methods of linked open data for archival resources. Its goal is the creation of a web
of linked archival data."	
	
	
�

4.b. Trends in LOD-LAM	
	
 * Mash ups	
 * Harvesting along side other protocols	
 * Increased interest	
 * Increased number of RDF serializations	
 * Governments making their content available	
 * Using them to enhance online catalogs	
 * Creating timelines	
 * Creating “named graphs”	
 * Increased number of programming toolkits	
 * Emphasis on “open” linked data and linked data in museums and archives	
 * Making RDF dumps available	
 * Interest in schema.org	
	
With great interest I read the Spring/Summer issue of Information Standards Quarterly where there were a
number of articles pertaining to linked open data in cultural heritage institutions. [0] Of particular
interest to me where the various loosely enumerated challenges of linked open data. Some of them included:	
	
 * the apparent Tower Of Babel when it comes to vocabularies used to describe content, and the same time
we need to have “ontology mindfulness”. 	
 * dirty, inconsistent, or wide varieties of data integrity	
 * persistent URIs	
 * the “chicken & egg” problem of why linked data if there is no killer application	
	
	
There are a number of challenges in the process. Some of them are listed below, and some of them have been
alluded to above:	
	
 * Create useful LOD, meaning, create LOD that links to other LOD. LOD does not live in a world by
itself. Remember, the "L" stands for "linked". For example, try to include URIs that are the URIs used on
other LOD data sets. Sometimes this is not possible, for example, le with the names of people in archival
materials. When possible, they used VIAF, but other times they needed to create their own URI denoting an
individual.	
	
 * There is a level of rigor involved in creating the data model, and there may be many discussions
regarding semantics. For example, what is a creator? Or, when is a term intended to be an index term as
opposed reference. When does one term in one vocabulary equal a different term in a different vocabulary?	
	
 * Balance the creation of your own vocabulary with the need to speak the language of others using their
vocabulary.	
	
 * Consider "fixing" the data as it comes in or goes out because it might not be consistent nor thorough.	
	
 * Provenance is an issue. People — especially scholars — will want to know where the LOD came from and
whether or not it is authoritative. How to solve or address this problem? The jury is still out on this
one.	
	
 * Creating and maintaining LOD is difficult because it requires the skills of a number of different
types of people. Computer programmers. Database designers. Subject experts. Metadata specialists.
Archivists. Etc. A team is all but necessary.	
	
	
	
�

5. Getting Started: Strategies and Steps	
	
	
Linked data represents a modern way of making your archival descriptions accessible to the wider world. In
that light, it represents a different way of doing things but not necessary a different what of doing
things. You will still be doing inventory. You will still be curating collections. You will still be
prioritizing what goes and what stays.	
	
On the other hand, linked data changes the way your descriptions get expressed and distributed. It is a
lot like taking a trip across country. The goal was always to get to the coast to see the ocean, but
instead of walking, going by stage coach, taking a train, or driving a car, you will be flying. Along the
way you may visit a few cities and have a few layovers. Bad weather may even get in the way, but sooner or
later you will get to your destination. Take a deep breath. Understand that the process will be one of
learning, and that learning will be applicable in other aspects of your work. The result will be two-fold.
First, a greater number of people will have access to your collections, and consequently, more people will
will be using your collections. 	
�

5.a. Defining your strategy: Articulate goals, objectives, and metrics to measure success.	
	
The building blocks of linked data include:	
	
 * URIs pointing to real-world objects: people, places, or things where things can be ideas or just about
anything on the Web  	
 * Ontologies, the language(s) of relationships between the URIs  	
 * Content to share with the wider world  	
 * People to do the work  	
 * Computer technology to manifest the work	
	
	
With this in mind, articulate some goals — broad targets of things you would like to accomplish. Some of
them might include:	
	
 * making your archival collections more widely accessible	
 * working with others to build virtual collections of like topics or formats	
 * incorporating your archival descriptions into public spaces like Wikipedia	
 * integrating your collections into local teaching, learning, and research activities	
 * increasing the awareness of your archive to benefactors	
 * increasing the computer technology skills of fellow archivists	
	
How might you go about accomplishing these goals? What are your objectives? (What method of transportation
are you going to use to get where you are going?) How am I going to measure success? In other words, you
will need to create an plan, and each item in the plan answers a simple question — Who is going to do what
by when? In other word, what people will be responsible for accomplishing the particular objective.
Exactly what will they be doing, and by what time will they have it accomplished. Each of these components
are described in greater detail below	
	
Who	
	
It is quite unlikely your linked data goals and objectives will be accomplished by a single person.
Instead it will most likely required a team of people. These people do not necessarily need to working in
the same physical location, but they will require a diverse set of skills. Some of them include, and each
plays a key, indispensable role:	
	
 * content specialists - These are the people who understand the “aboutness” of a particular collection.
These are the people who understand and can thoroughly articulate the significance of a collection. They
know how and why particular things belong in a collection. They are able to answer questions about the
collection as all as tell stories against it. 	
	
 * metadata specialists - These are people who understand data about data. Not only do they understand
the principles of controlled vocabularies and authority lists, but they are also familiar with a wide
variety of such lists, specifically as they are represented on the Web. In linked data there are fewer
descriptive cataloging “rules”. Nevertheless, the way the ontologies of linked data can be used need to be
interpreted, and this interpretation needs to be consistent. Metadata specialists understand these
principles.	
	
 * computer technologists - Not only are these the people who have a fundamental understanding of what
computer can and cannot do, but they also know how to put this understanding into practice. At the very
least, the computer technologists need to understand a myriad of data structures and how to convert them
into different data structures. Converting MARC 21 into MARCXML. Transforming EAD into HTML. Reporting
against a relational database to create serialized RDF. These tasks required computer programming skills,
but not necessarily any one in particular. Any modern programming language (Java, PHP, Python, Ruby, etc.)
includes the necessary function to complete the tasks. 	
	
What	

	
The what of your objectives are not so much identified with nouns as they are action verbs, such as:
write, evaluate, implement, examine, purchase, hire, prioritize, list, delete, acquire, discuss, share,
find, compare & contrast, stop, start, complete, continue, describe, edit, updated, create, purchase,
upgrade, etc. The what of your objective is in the doing.	
	
When	
	
The say, “Work expands to fill the available space.” If this is true, and no deadlines are articulated for
each objective, then the allotted amount of time for any given task is all but infinite, but this it not
true. Time is one of the most limited resources you have. When thinking about a given objective, ask
yourself how much time you think it will take, multiply the time by one and a half. Ask yourself when the
task can begin and document the beginning point as well as the estimated ending point. Do this all of your
objectives and the result will be a Gantt chart. It will now be easy to look at the chart on a regular
basis to see who things are progressing. 	
	
�

2.a Lots of ways to participate	
	
 * finding URIs	
 * associating URIs with predicates	
 * publishing serialized RDF with: 1) pure HTTP, and/or 2) SPARQL	
 * harvesting RDF	
 * storing RDF	
 * analyzing RDF	
 * providing services against RDF	
 * leading groups of people	
 * articulating policies	
 * allocating resources	
�

5.a Linked data and archival practice: Or, There is more than one way to get there	
	
Two recent experiences have taught me that — when creating some sort of information service — linked data
will reside and be mixed in with data collected from any number of Internet techniques. Linked data
interfaces will coexist with REST-ful interfaces, or even things as rudimentary as FTP. To the archivist,
this means linked data is not the be-all and end-all of information publishing. There is no such thing. To
the application programmer, this means you will need to have experience with a ever-growing number of
Internet protocols. To both it means, “There is more than one way to get there.”	
	
In October of 2013 I had the opportunity to attend the Semantic Web In Libraries conference. It was a
three-day event attended by approximately three hundred people who could roughly be divided into two
equally sized groups: computer scientists and cultural heritage institution employees. The bulk of the
presentations fell into two categories: 1) publishing linked data, and 2) creating information services.
The publishers talked about ontologies, human-computer interfaces for data creation/maintenance, and
systems exposing RDF to the wider world. The people creating information services were invariably
collecting, homogenizing, and adding value to data gathered from a diverse set of information services.
These information services were not limited to sets of linked data. They also included services accessible
via REST-ful computing techniques, OAI-PMH interfaces, and there were probably a few locally developed
file transfers or relational database dumps described as well. These people where creating lists of
information services, regularly harvesting content from the services, writing cross-walks, locally storing
the content, indexing it, providing services against the result, and sometimes republishing any number of
“stories” based on the data. For the second group of people, linked data was certainly not the only game
in town.	
	
In February of 2014 I had the opportunity to attend a hackathon called GLAM Hack Philly. A wide variety
of data sets were presented for “hacking” against. Some where TEI files describing Icelandic manuscripts.
Some was linked data published from the British museum. Some was XML describing digitized journals created
by a vendor-based application. Some of it resided in proprietary database applications describing the
location of houses in Philadelphia. Some of it had little or no computer-readable structure at all and
described plants. Some of it was the wiki mark-up for local municipalities. After the attendees (there
were about two dozen of us) learned about each of the data sets we self-selected and hacked away at
projects of our own design. The results fell into roughly three categories: geo-referencing objects,
creating searchable/browsable interfaces, and data enhancement. With the exception of the resulting hack
repurposing journal content to create new art, the results were pretty typical for cultural heritage
institutions. But what fascinated me was way us hackers selected our data sets. Namely, the more complete
and well-structured the data was the more hackers gravitated towards it. Of all the data sets, the TEI
files were the most complete, accurate, and computer-readable. Three or four projects were done against
the TEI. (Heck, I even hacked on the TEI files.) The linked data from the British Museum — very well
structured but not quite as through at the TEI — attracted a large number of hackers who worked together
for a common goal. All the other data sets had only one or two people working on them. What is the moral
to the story? There are two of them. First, archivists, if you want people to process your data and do
“kewl” things against it, then make sure the data is thorough, complete, and computer-readable. Second,
computer programmers, you will need to know a variety of data formats. Linked data is not the only game in
town.	
	
In summary, the technologies described in this Guidebook are not the only way to accomplish the goals of
archivists wishing to make their content more accessible. Instead, linked data is just one of many
protocols in the toolbox. It is open, standards-based, and simpler rather than more complex. On the other
hand, other protocols exist which have a different set of strengths and weaknesses. Computer technologists
will need to have a larger rather than smaller knowledge of various Internet tools. For archivists, the
core of the problem is still the collection and description of content. This — a what of archival practice
— continues to remain constant. It is the how of archival practice — the technology — that changes at a
much faster pace.	
	
�

5.b. Is your archival description LOD-ready?	
	
Is your archival description LOD-ready? Now? The simple, straight-forward answer is, "Yes." The longer and
more complicated answer is, "No. Your data is never 100% linked data ready because the process of archival
description is never finished." That said, the balance of the Guide describes what you can do going
forward. 	
	
�

5.c. Identify building blocks: metadata components in archival description that are (or nearly are) ready
for linking.	
	
�

5.d. Readiness: Making small changes in practice to make your description LOD-ready.	
	
�

5.e. What you can do now if you have (done)	
	
Each of the sections below outline how you can participate in linked data if currently have any number of
metadata file formats (MARC, EAD, etc.).	
	
Please remember, RDF is really about sets of triples, and these sets do not neatly correspond to document
structures like MARC or EAD. Using MARC and/or EAD to publish linked data is functional but not
necessarily optimal. At the same time, there does not currently exist a method for people writing archival
description to directly publish the fruits of their labors as RDF. Until such methods present themselves,
transforming present dauy metadata file formats is a viable option. �

5.e.i. EAD (done)	
	
If you have used EAD to describe your collections, then you can easily make your descriptions available as
valid linked data, but the result will be less than optimal. This is true not for a lack of technology but
rather from the inherent purpose and structure of EAD files.	
	
A few years ago an organisation in the United Kingdom called the Archive's Hub was funded by a granting
agency called JISC to explore the publishing of archival descriptions as linked data. One of the outcomes
of this effort was the creation of an XSL stylesheet transforming EAD into RDF/XML. The terms used in the
stylesheet originate from quite a number of standardized, widely accepted ontologies, and with only the
tiniest bit configuration / customization the stylesheet can transform a generic EAD file into valid
RDF/XML. The resulting XML files can then be made available on a Web server or incorporated into a triple
store. This goes a long way to publishing archival descriptions as linked data. The only additional things
needed are a transformation of EAD into HTML and the configuration of a Web server to do content
negotiation between the XML and HTML. 	
	
For the smaller archive with only a few hundred EAD files whose content does not change very quickly, this
is a simple, feasible, and practical solution to publishing archival descriptions as linked data. With the
exception of doing some content negotiation, this solution does not require any computer technology that
is not already being used in archives, and it only requires a few small tweaks to a given workflow:	
	
 1. implement a content negotiation solution  	
 2. create and maintain EAD file  	
 3. transform EAD into RDF/XML  	
 4. transform EAD into HTML  	
 5. save the resulting XML and HTML files on a Web server  	
 6. go to step #2	
	
EAD is a combination of narrative description and a hierarchal inventory list, and this data structure
does not lend itself very well to the triples of linked data. For example, EAD headers are full of
controlled vocabularies terms but there is no way to link these terms with specific inventory items. This
is because the vocabulary terms are expected to describe the collection as a whole, not individual things.
This problem could be overcome if each individual component of the EAD were associated with controlled
vocabulary terms, but this would significantly increase the amount of work needed to create the EAD files
in the first place.	
	
The common practice of using literals ("strings") to denote the names of people, places, and things in EAD
files would also need to be changed in order to fully realize the vision of linked data. Specifically, it
would be necessary for archivists to supplement their EAD files with commonly used URIs denoting subject
headings and named authorities. These URIs could be inserted into id attributes throughout an EAD file,
and the resulting RDF would be more linkable, but the labor to do so would increase, especially since many
of the named items will not exist in standardized authority lists.	
	
Despite these short comings, transforming EAD files into some sort of serialized RDF goes a long way
towards publishing archival descriptions as linked data. This particular process is a good beginning and
outputs valid information, just information that is not as linkable as possible. This process lends itself
to iterative improvements, and outputting something is better than outputting nothing. But this particular
proces is not for everybody. The archive whose content changes quickly, the archive with copious numbers
of collections, or the archive wishing to publish the most compliant linked data possible will probably
not want to use EAD files as the root of their publishing system. Instead some sort of database
application is probably the best solution.	
	
�

5.e.ii. EAC-CPF	
	
Encoded Archival Context for Corporate Bodies, Persons, and Families (EAC-CPF) goes a long way to
implementing a named authority database that could be linked from archival descriptions. These XML files
could easily be transformed into serialized RDF and therefore linked data. The resulting URIs could then
be incorporated into archival descriptions making the descriptions richer and more complete.	
	
For example the FindAndConnect site in Australia uses EAC-CPF under the hood to disseminate information
about people in its collection. [1] Similarly, “SNAC aims to not only make the [EAC-CPF] records more
easily discovered and accessed but also, and at the same time, build an unprecedented resource that
provides access to the socio-historical contexts (which includes people, families, and corporate bodies)
in which the records were created” -- u More than a thousand EAC-CPF records are available from the RAMP
project -- http://demo.rampeditor.info/export.php	
	
	
[1] FindAndConnect - http://www.findandconnect.gov.au	
[2] SNAC - http://socialarchive.iath.virginia.ed �

5.e.iii. MARC (done)	
	
In some ways MARC lends it self very well to being published via linked data, but in the long run it is
not really a feasible data structure.	
	
Converting MARC into serialized RDF through XSLT is at least a two step process. The first step is to
convert MARC into MARCXML. This can be done with any number of scripting languages and toolboxes. The
second step is to use a stylesheet such as the one created by Stefano Mazzocchi to transform the MARCXML
into RDF/XML. [1] From there a person could save the resulting XML files on a Web server, enhance access
via content negotiation, and called it linked data.	
	
Unfortunately, this particular approach has a number of drawbacks. First and foremost, the MARC format had
no place to denote URIs; MARC records are made up almost entirely of literals. Sure, URIs can be
constructed from various control numbers, but things like authors, titles, subject headings, and added
entries will most certainly be strings ("Mark Twain", "Adventures of Huckleberry Finn", "Bildungsroman",
or "Samuel Clemans"), not URIs. This issue can be overcome if the MARCXML were first converted into MODS
and URIs were inserted into id or xlink attributes of bibliographic elements, but this is extra work. If
an archive were to take this approach, then it would also behoove them to use MODS as their data structure
of choice, not MARC. Continually converting from MARC to MARCXML to MODS would be expensive in terms of
time. Moreover, with each new conversion the URIs from previous iterations would need to be re-created.	
	
[1] stylesheet by Mazzocchi -
https://github.com/dltj/MARC-MODS-RDFizer/blob/master/stylesheets/mods2rdf.xslt	
�

5.e.iv. METS, MODS, and perhaps more. (done)	
	
If you have archival descriptions in either of the METS or MODS formats, then transforming them into RDF
is as far away as your XSLT processor and a content negotiation implementation. As of this writing there
do not seem to be any METS to RDF stylesheets, but there are a couple stylesheets for MODS. The biggest
issue with these sorts of implementations are the URIs. It will be necessary for archivists to include
URIs into as many MODS id or xlink attributes as possible. The same thing holds true for METS files except
the id attribute is not designed to hold pointers to external sites. �

5.e.v. Databases (done)	
	
Publishing linked data through XML transformation is functional but not optimal. Publishing linked data
from a database comes closer to the ideal but requires a greater amount of technical computer
infrastructure and expertise. 	
	
Databases -- specifically, relational databases -- are the current best practice for organizing data. As
you may or may not know, relational databases are made up of many tables of data joined together with
keys. For example, a book may be assigned a unique identifier. The book has many characteristics such as a
title, number of pages, size, descriptive note, etc. Some of the characteristics are shared by other
books, like authors and subjects. In a relational database these shared characteristics would be saved in
additional tables, and they would be joined to a specific book through the use of unique identifiers
(keys). Given this sort of data structure, reports can be created from the database describing its
content. Similarly, queries can be applied against the database to uncover relationships that may not be
apparent at first glance or buried in reports. The power of relational databases lies in the use of keys
to make relationships between rows in one table and rows in other tables.	
	
Not coincidently, this is very much the way linked data is expected to be implemented. In the linked data
world, the subjects of triples are URIs (think database keys). Each URI is associated with one or more
predicates (think the characteristics in the book example). Each triple then has an object, and these
objects take the form of literals or other URIs. In the book example, the object could be “Adventures Of
Huckleberry Finn” or a URI pointing to Mark Twain. The reports of relational databases are analogous to
RDF serializations, and SQL (the relational database query language) is analogous to SPARQL, the query
language of RDF triple stores. Because of the close similarity between well-designed relational databases
and linked data principles, the publishing of linked data directly from relational databases makes whole
lot of sense, but the process requires the combined time and skills of a number of different people:
content specialists, database designers, and computer programmers. Consequently, the process of publishing
linked data from relational databases may be optimal, but it is more expensive.	
	
Thankfully, most archivists probably use some sort of database to manage their collections and create
their finding aids. Moreover, archivists probably use one of three or four tools for this purpose:
Archivist’s Toolkit, Archon, ArchivesSpace, or PastPerfect. Each of these systems have a relational
database at their heart. Reports could be written against the underlying databases to generate serialized
RDF and thus begin the process of publishing linked data. Doing this from scratch would be difficult, as
well as inefficient because many people would be starting out with the same database structure but
creating a multitude of varying outputs. Consequently, there are two alternatives. The first is to use a
generic database application to RDF publishing platform called D2RQ. The second is for the community to
join together and create a holistic RDF publishing system based on the database(s) used in archives.	
	
D2RQ is a very powerful software system. [1] It is supported, well-documented, executable on just about
any computing platform, open source, focused, functional, and at the same time does not try to be all
things to all people. Using D2RQ it is more than possible to quickly and easily publish a well-designed
relational database as RDF. The process is relatively simple:	
	
 * download the software  	
 * use a command-line utility to map the database	
 structure to a configuration file  	
 * season the configuration file to taste  	
 * run the D2RQ server using the configuration file	
 as input thus allowing people or RDF user-agents	
 to search and browse the database using linked	
 data principles  	
 * alternatively, dump the contents of the database	
 to an RDF serialization and upload the result	
 into your favorite RDF triple store	
	
The downside of D2RQ is its generic nature. It will create an RDF ontology whose terms correspond to the

names of database fields. These field names do not map to widely accepted ontologies and therefore will
not interact well with communities outside the ones using a specific database structure. Still, the use of
D2RQ is quick, easy, and accurate.	
	
The second alternative requires community effort and coordination. The databases of Archivist’s Toolkit,
Archon, ArchivesSpace, or Past Perfect could be assumed. The community could then get together and decide
on an RDF ontology to use for archival descriptions. The database structure(s) could then be mapped to
this ontology. Next, programs could be written against the database(s) to create serialized RDF thus
beginning the process of publishing linked data. Once that was complete, the archival community would need
to come together again to ensure it uses as many shared URIs as possible thus creating the most functional
sets of linked data. This second alternative requires a significant amount of community involvement and
wide-spread education. It represents a never-ending process.	
	
[1] D2RQ - http://d2rq.org �

6. On Your Way: Next Steps	
	
�

6.a. Integration into daily practice	
	
�

6.b. Three Cs: Cleanup, Conversion, Consistency	
	
The article entitled Recipes for Enhancing Digital Collections with Linked Data	
by Thomas Johnson and Karen Estlund (http://journal.code4lib.org/articles/9214) outlines a number of ways
of cleaning up data in content management systems by way of RDF statements. 	
	
clean up steps include:	
	
	 1.	 Remove noise	
	 2.	 Normalize presentation	
	 3.	 Assign URIs for curation objects	
	 4.	 Map legacy elements to Linked Data vocabularies	
	
As stated by Hillman, the process of moving to linked data is The key to this aug- mentation process
involves changing the basic metadata unit from “record” to “statement.” —
http://dcpapers.dublincore.org/pubs/article/view/770/766	
	
Problems with data, again from hillman an:	
	
 1. missing data – metadata elements not present in supplied metadata	
 2. incorrect data – metadata values not con- forming to standard element use 	
 3. confusing data – multiple values crammed into a single metadata element, embedded html tags, etc. 	
 4. insufficient data – e.g., no indication of controlled vocabularies used 	
	
Safe transformations include:	
	
 1. remove “noise” – a partial solution to the “incorrect data” problem. For example, we remove metadata
with no information value, such as empty metadata elements, metadata elements with values such as
“unknown” or “n/a” or consisting entirely of dashes or other punctuation.	
	
 2. detect and identify controlled vocabular- ies in use whenever possible – a partial solution to the
“insufficient data” prob- lem. For example, the DCMIType encod- ing scheme is applied to DC “Type”
elements when their value is one of the allowed DCMITypes [10]. This works well for small controlled
vocabularies; however, it does not scale well to large vocabularies such as LCSH.	
	
 3. normalize metadata presentation – clean up the values: remove double XML en- codings (“&lt;”
becomes “<”), extra whitespace (a tab followed by five spaces becomes a single space), etc.	
	
	
Creating and maintaining metadata is a never-ending process. The items being described can always use
elaboration. Collections may increase is size. Rights applied against content may change. Things become
digitized, or digitized things are migrated from one format to another. Because of these sorts of things
and many others, cleanup, conversion, and consistency are something every metadata specialist needs to
keep in mind. 	
	
Cleanup, conversion, and consistency means many things. Does all of your metadata use the same set of one
or more vocabularies? Are things spelled correctly? Maybe you used abbreviations in one document but
spelled things out in another? Have you migrated your JPEG images to JPEG2000 or TIFF formats? Maybe the
EAD DTD has been updated, and you want (need) to migrate your finding aids from one XML format to another?
Do all of your finding aids exhibit the same level of detail; are some “thinner” than others? Have you
used one form of a person’s name in one document but used another form in a different document? The
answers to these sorts of questions point to the need for cleanup, conversion, and consistency. 	
	
�

6.c. Tools	
	
[INSERT HERE A FEW PARAGRAPHS DESCRIBING THE TYPES OF TOOLS NEEDED TO DO THE WORK.] �

7. Looking Ahead: Advanced Tools and Visualizations	
	
�

7.a. Tools for archivists (data preparation, cleanup, management)	
	
Directories	
	
 * Linked Data Tools (http://linkeddata.org/tools) - 	
 * openRDF.org (http://www.openrdf.org/) - 	
 * RDFImportersAndAdapters (http://www.w3.org/wiki/RDFImportersAndAdapters) - Tools and applications that
can convert from other data and file formats to RDF.	
 * SparqlImplementations (http://www.w3.org/wiki/SparqlImplementations) - This page lists some
implementations of SPARQL, a query language and protocol for RDF acccess released by the W3C RDF Data
Access Working Group - DAWG.	
 * Tools (http://www.w3.org/2001/sw/wiki/Tools) - 	
	
ead editors	
	
 * eaditor (https://github.com/ewg118/eaditor) - EADitor is an XForms framework for the creation and
editing of Encoded Archival Description (EAD) finding aids using Orbeon, an enterprise-level XForms Java
application, which runs in Apache Tomcat.	
 * Ewg118/eaditor (https://github.com/ewg118/eaditor) - 	
	
converters / validators tools / editors	
 * Behas/oai2lod (https://github.com/behas/oai2lod) - 	
 * ConverterToRdf (http://www.w3.org/wiki/ConverterToRdf) - 	
 * ead2rdf (http://data.archiveshub.ac.uk/xslt/ead2rdf.xsl) - The “transform” process is currently
performed using XSLT to read an EAD XML document and output RDF/XML, and the current version of the
stylesheet is now available:	
 * Fusion Tables (http://www.google.com/drive/apps.html) - Bust your data out of its silo! Combine it
with other data on the web. Collaborate, visualize and share.	
 * oai2lod (https://github.com/behas/oai2lod) - exposes OAI-PMH data sources as Linked Data	
 * OpenRefine (https://github.com/OpenRefine/) - 	
 * OpenRefine (https://github.com/OpenRefine/) - OpenRefine is a free, open source power tool for working
with messy data and improving it	
 * Protégé (http://protege.stanford.edu) - Protégé is a free, open source ontology editor and
knowledge-base framework The Protégé platform supports modeling ontologies via a web client or a desktop
client. Protégé ontologies can be developed in a variety of formats including OWL, RDF(S), and XML Schema
Protégé is based on Java, is extensible, and provides a plug-and-play environment that makes it a flexible
base for rapid prototyping and application development.	
 * RDF2RDF (http://www.l3s.de/~minack/rdf2rdf/) - 	
 * RDFizers - SIMILE (http://simile.mit.edu/wiki/RDFizers) - 	
 * Tabulator (http://www.w3.org/2005/ajar/tab) - 	
 * Vapour, a Linked Data Validator (http://validator.linkeddata.org/vapour) - 	
 * W3C RDF Validation Service (http://www.w3.org/RDF/Validator/) - Enter a URI or paste an RDF/XML
document into the text field above. A 3-tuple (triple) representation of the corresponding data model as
well as an optional graphical visualization of the data model will be displayed.	
 * W3c/rdfvalidator-ng (https://github.com/w3c/rdfvalidator-ng) - 	
	
	
clients	
 * Curl (http://curl.haxx.se) - curl is a command line tool for transferring data with URL syntax,
supporting DICT, FILE, FTP, FTPS, Gopher, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP,
SCP, SFTP, SMTP, SMTPS, Telnet and TFTP. curl supports SSL certificates, HTTP POST, HTTP PUT, FTP
uploading, HTTP form based upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM,
Negotiate, kerberos...), file transfer resume, proxy tunneling and a busload of other useful tricks.	
 * Disco - Hyperdata Browser (http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco/) - The Disco -
Hyperdata Browser is a simple browser for navigating the Semantic Web as an unbound set of data sources.
The browser renders all information, that it can find on the Semantic Web about a specific resource, as an
HTML page. This resource description contains hyperlinks that allow you to navigate between resources.

While you move from resource to resource, the browser dynamically retrieves information by dereferencing
HTTP URIs and by following rdfs:seeAlso links.	
 * Disco Hyperdata Browser (http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco/) - 	
 * Gephi (http://gephi.org) - Gephi is an interactive visualization and exploration platform for all
kinds of networks and complex systems, dynamic and hierarchical graphs.	
 * OpenLink Data Explorer Extension (http://ode.openlinksw.com) - The OpenLink Data Explorer (ODE) is a
browser extension (currently available for Firefox, Safari, Chrome, Opera, and Internet Explorer with
additional browser support to follow) that adds a new option to the realm of Web User Agent functionality,
in the form of new menu options for viewing Data Sources associated with Web Pages.	
 * Sematic Web Client Library (http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/semwebclient/) - The
Sematic Web Client Library represents the complete Semantic Web as a single RDF graph. The library enables
applications to query this global graph using SPARQL- and find(SPO) queries. To answer queries, the
library dynamically retrieves information from the Semantic Web by dereferencing HTTP URIs, by following
rdfs:seeAlso links, and by querying the Sindice search engine. The library is written in Java and is based
on the Jena framework.	
 * SemWebClients (http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/SemWebClients) - 	
	
	
servers	
 * D2RQ (http://d2rq.org) - The D2RQ Platform is a system for accessing relational databases as virtual,
read-only RDF graphs. It offers RDF-based access to the content of relational databases without having to
replicate it into an RDF store. Using D2RQ you can: query a non-RDF database using SPARQL, access the
content of the database as Linked Data over the Web, create custom dumps of the database in RDF formats
for loading into an RDF store, access information in a non-RDF database using the Apache Jena API	
 * Linked Media Framework (https://code.google.com/p/lmf/) - The Linked Media Framework is an
easy-to-setup server application that bundles together some key open source projects to offer some
advanced services for linked media management.	
 * VirtuosoUniversalServer (http://www.w3.org/wiki/VirtuosoUniversalServer) - OpenLink Virtuoso is a
multi-purpose and multi-protocol (Hybrid) Data Server from OpenLink Software that includes SQL
Object-Relational, RDF, XML, and Free Text data management, alongside Web Application (HTTP, SOAP,
WebDAV), SyncML, and Discussion Server functionality, in a single server.	
	
	
storage Tools	
 * 4store - Scalable RDF Storage (http://4store.org/) - 	
 * Apache Jena - Home (http://jena.apache.org/) - 	
 * ckan (http://ckan.org) - The open source data portal software  	
 * CouchDB (http://couchdb.apache.org) - CouchDB is a database that completely embraces the web. Store
your data with JSON documents. Access your documents with your web browser, via HTTP. Query, combine, and
transform your documents with JavaScript. CouchDB works well with modern web and mobile apps. You can even
serve web apps directly out of CouchDB. And you can distribute your data, or your apps, efficiently using
CouchDB’s incremental replication. CouchDB supports master-master setups with automatic conflict
detection.  	
 * Library, The standard EAC-CPF is maintained by the Society of American Archivists in partnership with
the Berlin State. “Society of American Archivists and the Berlin State Library
(http://eac.staatsbibliothek-berlin.de/) - 	
 * Parrot, a RIF and OWL Documentation Service.” Accessed November 11, 2013.
http://ontorule-project.eu/parrot/parrot) - 	
 * Semantic Web Development Tools (http://www.w3.org/2001/sw/wiki/Tools) - This Wiki contains a
collection of tool references that can help in developing Semantic Web applications. These include
complete development environments, editors, libraries or modules for various programming languages,
specialized browsers, etc. The goal is to list such tools and not Semantic Web applications in general
(the interested reader may consider looking at the W3C SW Use Case Collection for those.)  	
 * Tableau Public (http://www.tableausoftware.com/public) - With Tableau Public you can create
interactive graphs, dashboards, maps and tables from virtually any data and embed them on your website or
blog in minutes.  	
 * Tabulator (http://www.w3.org/2005/ajar/tab) - The Tabulator project is a generic data browser and

editor. Using outline and table modes, it provides a way to browse RDF data on the web. RDF is the
standard for inter-application data exchange.  	
 * TemaTres (http://www.vocabularyserver.com) - The open source way to manage formal representations of
knowledge  	
	
	
	
�

7.b. Tools for users (visualizations, interfaces)	
	
�

7.a.ii. Gaps: What is needed	
	
There needs to be easy to use tools to find URIs and insert them in to archival descriptions. One such
tool is called lobid:	
	
 In “From strings to things: A linked data API for library hackers	
 and Web developers” Fabian Steeg and Pascal Christoph (HBZ)	
 described an interface allowing librarians to determine the URIs	
 of people, places, and things for library catalog records. “How	
 can we benefit from linked data without being linked data	
 experts? We want to pub Web developers into focus using JSON for	
 HTTP.” There are few hacks illustrating some of their work on	
 Github in the lobid repository. --https://github.com/lobid	
	
Another example would be an interface to the varius linked data sets available from the Library of
Congress. --http://id.loc.gov	
	
Listed in no priority order, some of the things needed, include:	
	
 * hands-on training	
 * desktop tools enabling people or machines to associate strings with URIs	
 * a simple RDF statement editor	
 * the killer app / additional demonstration applications	
 * a conceptional shift from document to statement	
	
A "real" RDF editing tool is a gap. 	
	
A [insert your favorite tool here, such as Archivist's Toolkit, Archon, ArchiveSpace, etc.] to RDF
publishing system tool to a gap.	
	
Write "add-ons" to existing systems that output to CIDOC Conceptual Reference Model (CRM)	
	
	
�

8.3 Further reading	

This is a list of links and citations to get one started on Linked Open Data	
	
admin. “Barriers to Using EAD,” August 4, 2012. http://oclc.org/research/activities/eadtools.html.  	
	
Becker, Christian, and Christian Bizer. “Exploring the Geospatial Semantic Web with DBpedia Mobile.” Web
Semantics: Science, Services and Agents on the World Wide Web 7, no. 4 (December 2009): 278–286.
doi:10.1016/j.websem.2009.09.004.  	
	
Belleau, François, Marc-Alexandre Nolin, Nicole Tourigny, Philippe Rigault, and Jean Morissette. “Bio2RDF:
Towards a Mashup to Build Bioinformatics Knowledge Systems.” Journal of Biomedical Informatics 41, no. 5
(October 2008): 706–716. doi:10.1016/j.jbi.2008.03.004.  	
	
Berners-Lee, Tim. “Linked Data - Design Issues.” Accessed August 4, 2013.
http://www.w3.org/DesignIssues/LinkedData.html.  	
	
Berners-Lee, Tim, James Hendler, and Ora Lassila. “The Semantic Web.” Scientific American 284, no. 5 (May
2001): 34–43. doi:10.1038/scientificamerican0501-34.  	
	
Bizer, Christian, Tom Heath, and Tim Berners-Lee. “Linked Data - The Story So Far:” International Journal
on Semantic Web and Information Systems 5, no. 3 (33 2009): 1–22. doi:10.4018/jswis.2009081901.  	
	
Carroll, Jeremy J., Christian Bizer, Pat Hayes, and Patrick Stickler. “Named Graphs.” Web Semantics:
Science, Services and Agents on the World Wide Web 3, no. 4 (December 2005): 247–267.
doi:10.1016/j.websem.2005.09.001.  	
	
“Chem2bio2rdf - How to Publish Data Using D2R?” Accessed January 6, 2014.
http://chem2bio2rdf.wikispaces.com/How+to+publish+data+using+D2R%3F.  	
	
“Content Negotiation.” Wikipedia, the Free Encyclopedia, July 2, 2013.
https://en.wikipedia.org/wiki/Content_negotiation.  	
	
“Cool URIs for the Semantic Web.” Accessed November 3, 2013. http://www.w3.org/TR/cooluris/.  	
	
Correndo, Gianluca, Manuel Salvadores, Ian Millard, Hugh Glaser, and Nigel Shadbolt. “SPARQL Query
Rewriting for Implementing Data Integration over Linked Data.” 1. ACM Press, 2010.
doi:10.1145/1754239.1754244.  	
	
David Beckett. “Turtle.” Accessed August 6, 2013. http://www.w3.org/TR/2012/WD-turtle-20120710/.  	
	
“Debugging Semantic Web Sites with cURL | Cygri’s Notes on Web Data.” Accessed November 3, 2013.
http://richard.cyganiak.de/blog/2007/02/debugging-semantic-web-sites-with-curl/.  	
	
Dunsire, Gordon, Corey Harper, Diane Hillmann, and Jon Phipps. “Linked Data Vocabulary Management:
Infrastructure Support, Data Integration, and Interoperability.” Information Standards Quarterly 24, no.
2/3 (2012): 4. doi:10.3789/isqv24n2-3.2012.02.  	
	
Elliott, Thomas, Sebastian Heath, and John Muccigrosso. “Report on the Linked Ancient World Data
Institute.” Information Standards Quarterly 24, no. 2/3 (2012): 43. doi:10.3789/isqv24n2-3.2012.08.  	
	
Fons, Ted, Jeff Penka, and Richard Wallis. “OCLC’s Linked Data Initiative: Using Schema.org to Make
Library Data Relevant on the Web.” Information Standards Quarterly 24, no. 2/3 (2012): 29.
doi:10.3789/isqv24n2-3.2012.05.  	
	
Hartig, Olaf. “Querying Trust in RDF Data with tSPARQL.” In The Semantic Web: Research and Applications,

edited by Lora Aroyo, Paolo Traverso, Fabio Ciravegna, Philipp Cimiano, Tom Heath, Eero Hyvönen, Riichiro
Mizoguchi, Eyal Oren, Marta Sabou, and Elena Simperl, 5554:5–20. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. http://www.springerlink.com/index/10.1007/978-3-642-02121-3_5.  	
	
Hartig, Olaf, Christian Bizer, and Johann-Christoph Freytag. “Executing SPARQL Queries over the Web of
Linked Data.” In The Semantic Web - ISWC 2009, edited by Abraham Bernstein, David R. Karger, Tom Heath,
Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, 5823:293–309. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009.
http://www.springerlink.com/index/10.1007/978-3-642-04930-9_19.  	
	
Heath, Tom, and Christian Bizer. “Linked Data: Evolving the Web into a Global Data Space.” Synthesis
Lectures on the Semantic Web: Theory and Technology 1, no. 1 (February 9, 2011): 1–136.
doi:10.2200/S00334ED1V01Y201102WBE001.  	
	
Isaac, Antoine, Robina Clayphan, and Bernhard Haslhofer. “Europeana: Moving to Linked Open Data.”
Information Standards Quarterly 24, no. 2/3 (2012): 34. doi:10.3789/isqv24n2-3.2012.06.  	
	
Kobilarov, Georgi, Tom Scott, Yves Raimond, Silver Oliver, Chris Sizemore, Michael Smethurst, Christian
Bizer, and Robert Lee. “Media Meets Semantic Web – How the BBC Uses DBpedia and Linked Data to Make
Connections.” In The Semantic Web: Research and Applications, edited by Lora Aroyo, Paolo Traverso, Fabio
Ciravegna, Philipp Cimiano, Tom Heath, Eero Hyvönen, Riichiro Mizoguchi, Eyal Oren, Marta Sabou, and Elena
Simperl, 5554:723–737. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
http://www.springerlink.com/index/10.1007/978-3-642-02121-3_53.  	
	
LiAM. “LiAM: Linked Archival Metadata.” Accessed July 30, 2013. http://sites.tufts.edu/liam/.  	
	
“Linked Data.” Wikipedia, the Free Encyclopedia, July 13, 2013.
http://en.wikipedia.org/w/index.php?title=Linked_data&oldid=562554554.  	
	
“Linked Data Glossary.” Accessed January 1, 2014. http://www.w3.org/TR/ld-glossary/.  	
	
“Linked Open Data.” Europeana. Accessed September 12, 2013.
http://pro.europeana.eu/web/guest;jsessionid=09A5D79E7474609AE246DF5C5A18DDD4.  	
	
“Linked Open Data in Libraries, Archives, & Museums (Google Group).” Accessed August 6, 2013.
https://groups.google.com/forum/#!forum/lod-lam.  	
	
“Linking Lives | Using Linked Data to Create Biographical Resources.” Accessed August 16, 2013.
http://archiveshub.ac.uk/linkinglives/.	
	
“LOCAH Linked Archives Hub Test Dataset.” Accessed August 6, 2013. http://data.archiveshub.ac.uk/.  	
	
“LODLAM - Linked Open Data in Libraries, Archives & Museums.” Accessed August 6, 2013.
http://lodlam.net/.  	
	
“Notation3.” Wikipedia, the Free Encyclopedia, July 13, 2013.
http://en.wikipedia.org/w/index.php?title=Notation3&oldid=541302540.  	
	
“OWL 2 Web Ontology Language Primer.” Accessed August 14, 2013.
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.  	
	
Quilitz, Bastian, and Ulf Leser. “Querying Distributed RDF Data Sources with SPARQL.” In The Semantic Web:
Research and Applications, edited by Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis
Koubarakis, 5021:524–538. Berlin, Heidelberg: Springer Berlin Heidelberg. Accessed September 4, 2013.
http://www.springerlink.com/index/10.1007/978-3-540-68234-9_39.  	
	
“RDF/XML.” Wikipedia, the Free Encyclopedia, July 13, 2013. http://en.wikipedia.org/wiki/RDF/XML.  	

	
“RDFa.” Wikipedia, the Free Encyclopedia, July 22, 2013. http://en.wikipedia.org/wiki/RDFa.  	
	
“Semantic Web.” Wikipedia, the Free Encyclopedia, August 2, 2013.
http://en.wikipedia.org/w/index.php?title=Semantic_Web&oldid=566813312.  	
	
“SPARQL.” Wikipedia, the Free Encyclopedia, August 1, 2013.
http://en.wikipedia.org/w/index.php?title=SPARQL&oldid=566718788.	
	
“SPARQL 1.1 Overview.” Accessed August 6, 2013. http://www.w3.org/TR/sparql11-overview/.  	
	
“Spring/Summer 2012 (v.24 No.2/3) - National Information Standards Organization.” Accessed August 6, 2013.
http://www.niso.org/publications/isq/2012/v24no2-3/.  	
	
Summers, Ed, and Dorothea Salo. Linking Things on the Web: A Pragmatic Examination of Linked Data for
Libraries, Archives and Museums. ArXiv e-print, February 19, 2013. http://arxiv.org/abs/1302.4591.  	
	
“The Linking Open Data Cloud Diagram.” Accessed November 3, 2013. http://lod-cloud.net/.  	
	
“The Trouble with Triples | Duke Collaboratory for Classics Computing (DC3).” Accessed November 6, 2013.
http://blogs.library.duke.edu/dcthree/2013/07/27/the-trouble-with-triples/.  	
	
Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web.” Accessed September 4, 2013.
http://www.scientificamerican.com/article.cfm?id=the-semantic-web.  	
	
“Transforming EAD XML into RDF/XML Using XSLT.” Accessed August 16, 2013.
http://archiveshub.ac.uk/locah/tag/transform/.  	
	
“Triplestore - Wikipedia, the Free Encyclopedia.” Accessed November 11, 2013.
http://en.wikipedia.org/wiki/Triplestore.  	
	
“Turtle (syntax).” Wikipedia, the Free Encyclopedia, July 13, 2013.
http://en.wikipedia.org/w/index.php?title=Turtle_(syntax)&oldid=542183836.  	
	
Volz, Julius, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. “Discovering and Maintaining Links on
the Web of Data.” In The Semantic Web - ISWC 2009, edited by Abraham Bernstein, David R. Karger, Tom
Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, 5823:650–665. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009.
http://www.springerlink.com/index/10.1007/978-3-642-04930-9_41.  	
	
Voss, Jon. “LODLAM State of Affairs.” Information Standards Quarterly 24, no. 2/3 (2012): 41.
doi:10.3789/isqv24n2-3.2012.07.  	
	
W3C. “LinkedData.” Accessed August 4, 2013. http://www.w3.org/wiki/LinkedData.  	
	
“Welcome to Euclid.” Accessed September 4, 2013. http://www.euclid-project.eu/.  	
	
“Wiki.dbpedia.org : About.” Accessed November 3, 2013. http://dbpedia.org/About.  	
�

Appendix A: content-negotiation and cURL	
	
This is the tiniest of introductions to content negotiation and cURL.	
	
The computer technology behind linked data is about two things: 1) serializing RDF, and 2) making it
available on the Web. Various RDF serializations are described in another section of the Guidebook. The
second thing, making RDF available on the Web, can be accomplished in any number of ways, including but
not necessarily limited to: 1) embedded in HTML as RDFa, 2) "dumps" of RDF, 3) SPARQL interfaces, and 3)
content negotiation. Exploiting RDFa was discussed in a previous section. A number of the data sets in
Projects section make their RDF available as "dumps". The next section of the Guidebook is a tutorial on
SPARQL. This section describes content negotiation and a command line tool called cURL, which is very
helpful for understanding content negotiation.	
	
Content negotiation is an HTTP-pure technique for exchanging data on the Web. In the briefest of
descriptions, content negotiation is a client-server technique where the client application first requests
some data via a URI in a specific format (plain text, HTML, PDF, RDF/XML, etc.). The server responses with
either a "file not found" error, or a URL where the request can be satisfied. It is then up to the client
to make a second request with the given URL to obtain the desired data. Content negotiation and the
complementary "REST-ful" computing are the primary means of Web-based data exchange, and it is interesting
to note the differences between the two. Content negotiation only requires an (in-depth) knowledge of HTTP
to implement. Given a URI and a thorough knowledge of HTTP, a programmer can effectively harvest linked
data. On the other hand, REST-ful interfaces, while requiring less knowledge of HTTP, are often specific
to individual websites. They also often require API "keys" as well as the use of very long URLs complete
with domain-specific name/value pairs. Content negotiation is more standards-based when compared to
REST-ful computing, but REST-ful computing is easier to initially grasp. Both have their advantages and
disadvantages, but content negotiation is the way of linked data. 	
	
CURL is a command-line tool making it easier for you to see the Web as data and not presentation.
Consequently it is a ver good tool for learning about content negotiation. Please don't be afraid of cURL
because it is a command-line utility. Understanding how to use cURL and to do content-negotiation by hand
will take you a long way in understanding linked data. 	
	
The first step is to download and install cURL. If you have a Macintosh or a Linux computer, then it is
probably already installed. If not, then give the cURL download wizard a whirl. [1] We'll wait.	
	
Next, you need to open a terminal. On Macintosh computers a terminal application is located in the
Utilities folder of your Applications folder. It is called "Terminal". People using Windows-based
computers can find the "Command" application by searching for it in the Start Menu. Once cURL has been
installed and a terminal has been opened, then you can type the following command at the prompt to display
a help text:	
	
 curl --help	
	
There are many options there, almost too many. It is often useful to view only one page of text at a time,
and you can "pipe" the output through to a program called "more" to do this:	
	
 curl --help | more	
 	
By pressing the space bar, you can go forward in the display. By pressing "b" you can go backwards, and by
pressing "q" you can quit.	
	
Feed cURL the complete URL of Google's home page to see how much content actually goes into their
"simple" presentation:	
	
 curl http://www.google.com/ | more	
	
The communication of the World Wide Web (the hypertext transfer protocol or HTTP) is divided into two

parts: 1) a header, and 2) a body. By default cURL displays the body content. To see the header, add the
-I (for a mnemonic, think "information") to the command:	
	
 curl -I http://www.google.com/	
	
The result will be a list of characteristics the remote Web server is using to describe this particular
interaction between itself and cURL. The most important things to note are: 1) the status line and 2) the
content type. The status line will be the first line in the result, and it will say something like
"HTTP/1.1 200 OK", meaning there were no errors. Another line will begin with "Content-Type:" and denotes
the format of the data being transferred. In most cases the content type line will include something like
"text/html" meaning the content being sent is in the form of an HTML document. 	
	
Now feed cURL a URI for Walt Disney, such as one from DBpedia:	
	
 curl http://dbpedia.org/resource/Walt_Disney	
	
The result will be empty, but upon the use of the -I switch you can see how the status line changed to
"HTTP/1.1 303 See Other". This means there is no content at the given URI, and the line starting with
"Location:" is a pointer — an instruction — to go to a different document. In the parlance of HTTP this is
called redirection. Using cURL going to the recommended location results in a stream of HTML:	
	
 curl http://dbpedia.org/page/Walt_Disney | more	
	
Most Web browsers automatically follow HTTP redirection commands, but cURL needs to be told this
explicitly through the use of the -L switch. (Think "location".) Consequently, given the original URI, the
following command will display HTML even though the URI has no content:	
	
 curl -L http://dbpedia.org/resource/Walt_Disney | more	
	
Now remember, the Semantic Web and linked data depend on the exchange of RDF, and upon closer examination
you can see there are "link" elements in the resulting HTML, and these elements point to URLs with the
.rdf extension. Feed these URLs to cURL to see an RDF representation of the Walt Disney data:	
	
 curl http://dbpedia.org/data/Walt_Disney.rdf | more	
	
Downloading entire HTML streams, parsing them for link elements containing URLs of RDF, and then
requesting the RDF is not nearly as efficient as requesting RDF from the remote server in the first place.
This can be done by telling the remote server you accept RDF as a format type. This is accomplished
through the use of the -H switch. (Think "header".) For example, feed cURL the URI for Walt Disney and
specify your desire for RDF/XML:	
	
 curl -H "Accept: application/rdf+xml" http://dbpedia.org/resource/Walt_Disney	
	
Ironically, the result will be empty, and upon examination of the HTTP headers (remember the -I switch)
you can see that the RDF is located at a different URL, namely, http://dbpedia.org/data/Walt_Disney.xml:	
	
 curl -I -H "Accept: application/rdf+xml" http://dbpedia.org/resource/Walt_Disney	
	
Finally, using the -L switch, you can use the URI for Walt Disney to request the RDF directly:	
	
 curl -L -H "Accept: application/rdf+xml" http://dbpedia.org/resource/Walt_Disney	
	
That is cURL and content-negotiation in a nutshell. A user-agent submits a URI to a remote HTTP server and
specifies the type of content it desires. The HTTP server responds with URLs denoting the location of the
desired content. The user-agent then makes a more specific request. It is sort of like the movie. "One URI
to rule them all." In summary, remember:	
	

 * cURL is a command-line user-agent	
 * given a URL, cURL returns, by default, the body of an HTTP transaction	
 * the -I switch allows you to see the HTTP header	
 * the -L switch makes cURL automatically follow HTTP redirection requests	
 * the -H switch allows you to specify the type of content you wish to accept	
 * given a URI and the use of the -L and -H switches you are able to retrieve either HTML or RDF	
	
Use cURL to actually see linked data in action, and here are a few more URIs to explore:	
	
 * Walt Disney via VIAF - http://viaf.org/viaf/36927108/	
 * origami via the Library of Congress - http://id.loc.gov/authorities/subjects/sh85095643	
 * Paris from DBpedia - http://dbpedia.org/resource/Paris	
	
	
[1] cURL download wizard - http://curl.haxx.se/dlwiz/	
�

10 - SPARQL tutorial (done)	
	
This is the simplest of SPARQL tutorials. The tutorial's purpose is two-fold: 1) through a set of
examples, introduce the reader to the syntax of SPARQL queries, and 2) to enable the reader to initially
explore any RDF triple store which is exposed as a SPARQL endpoint.	
	
SPARQL (SPARQL protocol and RDF query language) is a set of commands used to search RDF triple stores. It
is modeled after SQL (structured query language), the set of commands used to search relational databases.
If you are familiar with SQL, then SPARQL will be familiar. If not, then think of SPARQL queries as
formalized sentences used to ask a question and get back a list of answers. 	
	
Also, remember, RDF is a data structure of triples: 1) subjects, 2) predicates, and 3) objects. The
subjects of the triples are always URIs -- identifiers of "things". Predicates are also URIs, but these
URIs are intended to denote relationships between subjects and objects. Objects are preferably URIs but
they can also be literals (words or numbers). Finally, RDF objects and predicates are defined in
human-created ontologies as a set of classes and properties where classes are abstract concepts and
properties are characteristics of the concepts. 	
	
Try the following steps with just about any SPARQL endpoint:	
	
 1. Get an overview - A good way to begin is to get a list of all the ontological classes in the triple
store. In essence, the query below says, "Find all the unique objects (classes) in the triple store where
any subject is a type of object, and sort the result by object."	
 	
 SELECT DISTINCT ?o WHERE { ?s a ?o } ORDER BY ?o	
	
 2. Learn about the employed ontologies - Ideally, each of the items in the result will be an actionable
URI in the form of a "cool URL". Using your Web browser, you ought to be able to go to the URL and read a
thorough description of the given class, but the URLs are not always actionable. 	
 	
 3. Learn more about the employed ontologies - Using the following query you can create a list of all the
properties in the triple store as well as infer some of the characteristics of each class. Unfortunately,
this particular query is intense. It may require a long time to process or may not return at all. In
English, the query says, "Find all the unique predicates where the RDF triple has any subject, any
predicate, or any object, and sort the result by predicate."	
 	
 SELECT DISTINCT ?p WHERE { ?s ?p ?o } ORDER BY ?p	
 	
 4. Guess - Steps #2 and Step #3 are time intensive, and consequently it is sometimes easier just browse
the triple store by selecting one of the "cool URLs" returned in Step #1. Submit a modified version of
Step #1's query. It says, "Find all the subjects where any RDF subject (URI) is a type of object (class)".
Using the LiAM triple store, the following query tries to find all the things that are EAD finding aids.	
 	
 SELECT ?s WHERE { ?s a <http://data.archiveshub.ac.uk/def/FindingAid> }	
 	
 5. Learn about a specific thing - The result of Step #4 ought to be a list of (hopefully actionable)
URIs. You can learn everything about that URI with the following query. It says, "Find all the predicates
and objects in the triple store where the RDF triple's subject is a given value and the predicate and
object are of any value, and sort the result by predicate". In this case, the given value is one of the
items returned from Step #4.	
 	
 SELECT ?p ?o WHERE { <http://infomotions.com/sandbox/liam/id/mum432> ?p ?o } ORDER BY ?p	
 	
 6. Repeat a few times - If the results from Step #5 returned seemingly meaningful and complete
information about your selected URI, then repeat Step #5 a few times to get a better feel for some of the
"things" in the triple store. If the results were not meaningful, then got to Step #4 to browser another
class.	

 	
 7. Take these hints - The first of these following two queries generates a list of ten URIs pointing to
things that came from MARC records. The second query is used to return everything about a specific URI
whose data came from a MARC record.	
 	
 SELECT ?s WHERE { ?s a <http://simile.mit.edu/2006/01/ontologies/mods3#Record> } LIMIT 10	
 SELECT ?p ?o WHERE { <http://infomotions.com/sandbox/liam/id/shumarc681792> ?p ?o } ORDER BY ?p	
	
 8. Read the manual - At this point, it is a good idea to go back to Step #2 and read the more formal
descriptions of the underlying ontologies.	
 	
 9. Browse some more - If the results of Step #3 returned successfully, then browse the objects in the
triple store by selecting a predicate of interest. The following queries demonstrate how to list things
like titles, creators, names, and notes.	
 	
 SELECT ?s ?o WHERE { ?s <http://purl.org/dc/terms/title> ?o } ORDER BY ?o LIMIT 100	
 SELECT ?s ?o WHERE { ?s <http://simile.mit.edu/2006/01/roles#creator> ?o } ORDER BY ?o LIMIT 100	
 SELECT ?s ?o WHERE { ?s <http://xmlns.com/foaf/0.1/name> ?o } ORDER BY ?o LIMIT 100	
 SELECT ?s ?o WHERE { ?s <http://data.archiveshub.ac.uk/def/note> ?o } ORDER BY ?o LIMIT 100	
	
 10. Read about SPARQL - This was the tiniest of SPARQL tutorials. Using the LiAM data set as an example,
it demonstrated how to do the all but simplest queries against an RDF triple store. There is a whole lot
more to SPARQL than SELECT, DISTINCT, WHERE, ORDER BY, and LIMIT commands. SPARQL supports a short-hand
way of denoting classes and properties called PREFIX. It supports Boolean operations, limiting results
based on "regular expressions", and a few mathematical functions. SPARQL can also be used to do inserts
and deletes against triple stores. The next step is to read more about SPARQL. Consider reading the
canonical documentation from the W3C, "SPARQL by example", and the Jena project's "SPARQL Tutorial". [1,
2, 3]	
	
Finally, don't be too intimidated about SPARQL. Yes, it is possible to submit SPARQL queries by hand, but
in reality, person-friendly front-ends are expected to be created making search much easier.	
	
	
[1] canonical documentation - http://www.w3.org/TR/rdf-sparql-query/ 	
[2] SPARQL By Example - https://www.cambridgesemantics.com/semantic-university/sparql-by-example	
[3] SPARQL Tutorial - http://jena.apache.org/tutorials/sparql.html �

11 Scripts (done)	
	
This section lists a set of computer source code implementing a simple linked data publishing system.
Assuming the (Perl) developer has on hand a set of EAD finding aids and/or sets of MARC records, this
system can:	
	
 * transform EAD into RDF/XML	
 * transform EAD into HTML	
 * convert MARC into RDF/XML	
 * convert MARC into HTML	
 * support content negotiation against the RDF/XML and HTML	
 * initialize a triple store	
 * batch load RDF/XML into the triple store	
 * search the triple store	
 * dump the entire triple store as RDF/XML	
 * support a SPARQL endpoint against the triple store	
	
This publishing system is more than a toy and ought to be able to support the needs of many archives with
small- to medium-sized collections. �

11.a ead2rdf.pl - Perl script to make EAD files accessible via linked data (done)	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 6, 2013 - based on marc2linkedata.pl	
	
	
# configure	
use constant ROOT => '/disk01/www/html/main/sandbox/liam';	
use constant EAD => ROOT . '/src/ead/';	
use constant DATA => ROOT . '/data/';	
use constant PAGES => ROOT . '/pages/';	
use constant EAD2HTML => ROOT . '/etc/ead2html.xsl';	
use constant EAD2RDF => ROOT . '/etc/ead2rdf.xsl';	
use constant SAXON => 'java -jar /disk01/www/html/main/sandbox/liam/bin/saxon.jar -s:##SOURCE##
-xsl:##XSL## -o:##OUTPUT##';	
	
# require	
use strict;	
use XML::XPath;	
use XML::LibXML;	
use XML::LibXSLT;	
	
# initialize	
my $saxon = '';	
my $xsl = '';	
my $parser = XML::LibXML->new;	
my $xslt = XML::LibXSLT->new;	
	
# process each record in the EAD directory	
my @files = glob EAD . "*.xml";	
for (0 .. $#files) {	
	
	 # re-initialize	
	 my $ead = $files[$_];	
	 print " EAD: $ead\n";	
	
	 # get the identifier	
	 my $xpath = XML::XPath->new(filename => $ead);	
	 my $identifier = $xpath->findvalue('/ead/eadheader/eadid');	
	 $identifier =~ s/[^\w]//g;	
	 print " identifier: $identifier\n";	
	 print " URI: http://infomotions.com/sandbox/liam/id/$identifier\n";	
	 	 	
	 # re-initialize and sanity check	
	 my $output = PAGES . "$identifier.html";	
	 if (! -e $output or -s $output == 0) {	
	 	
	 	 # transform marcxml into html	
	 	 print " HTML: $output\n";	
	 	 my $source = $parser->parse_file($ead) or warn $!;	
	 	 my $style = $parser->parse_file(EAD2HTML) or warn $!;	
	 	 my $stylesheet = $xslt->parse_stylesheet($style) or warn $!;	
	 	 my $results = $stylesheet->transform($source) or warn $!;	
	 	 my $html = $stylesheet->output_string($results);	
	 	
	 	 &save($output, $html);	
	

	 }	
	 else { print " HTML: skipping\n" }	
	 	
	 # re-initialize and sanity check	
	 my $output = DATA . "$identifier.rdf";	
	 if (! -e $output or -s $output == 0) {	
	 	
	 	 # create saxon command, and save rdf	
	 	 print " RDF: $output\n";	
	 	 $saxon = SAXON;	
	 	 $xsl = EAD2RDF;	
	 	 $saxon =~ s/##SOURCE##/$ead/e;	
	 	 $saxon =~ s/##XSL##/$xsl/e;	
	 	 $saxon =~ s/##OUTPUT##/$output/e;	
	 	 system $saxon;	
	 	
	 }	
	 else { print " RDF: skipping\n" }	
	 	
	 # prettify	
	 print "\n";	
	 	
}	
	
# done	
exit;	
	
	
sub save {	
	
	 open F, ' > ' . shift or die $!;	
	 binmode(F, ':utf8');	
	 print F shift;	
	 close F;	
	 return;	
	
}	
	
	
	
�

11.b marc2rdf.pl - Perl script to make MARC records accessible via linked data (done)	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 5, 2013 - first cut;	
	
	
# configure	
use constant ROOT => '/disk01/www/html/main/sandbox/liam';	
use constant MARC => ROOT . '/src/marc/';	
use constant DATA => ROOT . '/data/';	
use constant PAGES => ROOT . '/pages/';	
use constant MARC2HTML => ROOT . '/etc/MARC21slim2HTML.xsl';	
use constant MARC2MODS => ROOT . '/etc/MARC21slim2MODS3.xsl';	
use constant MODS2RDF => ROOT . '/etc/mods2rdf.xsl';	
use constant MAXINDEX => 100;	
	
# require	
use IO::File;	
use MARC::Batch;	
use MARC::File::XML;	
use strict;	
use XML::LibXML;	
use XML::LibXSLT;	
	
# initialize	
my $parser = XML::LibXML->new;	
my $xslt = XML::LibXSLT->new;	
	
# process each record in the MARC directory	
my @files = glob MARC . "*.marc";	
for (0 .. $#files) {	
	
	 # re-initialize	
	 my $marc = $files[$_];	
	 my $handle = IO::File->new($marc);	
	 binmode(STDOUT, ':utf8');	
	 binmode($handle, ':bytes');	
	 my $batch = MARC::Batch->new('USMARC', $handle);	
	 $batch->warnings_off;	
	 $batch->strict_off;	
	 my $index = 0;	
	
	 # process each record in the batch	
	 while (my $record = $batch->next) {	
	
	 	 # get marcxml	
	 	 my $marcxml = $record->as_xml_record;	
	 	 my $_001 = $record->field('001')->as_string;	
	 	 $_001 =~ s/_//;	
	 	 $_001 =~ s/ +//;	
	 	 $_001 =~ s/-+//;	
	 	 print " marc: $marc\n";	
	 	 print " identifier: $_001\n";	
	 	 print " URI: http://infomotions.com/sandbox/liam/id/$_001\n";	
	
	 	 # re-initialize and sanity check	
	 	 my $output = PAGES . "$_001.html";	

	 	 if (! -e $output or -s $output == 0) {	
	 	
	 	 	 # transform marcxml into html	
	 	 	 print " HTML: $output\n";	
	 	 	 my $source = $parser->parse_string($marcxml) or warn $!;	
	 	 	 my $style = $parser->parse_file(MARC2HTML) or warn $!;	
	 	 	 my $stylesheet = $xslt->parse_stylesheet($style) or warn $!;	
	 	 	 my $results = $stylesheet->transform($source) or warn $!;	
	 	 	 my $html = $stylesheet->output_string($results);	
	 	
	 	 	 &save($output, $html);	
	
	 	 }	
	 	 else { print " HTML: skipping\n" }	
	
	 	 # re-initialize and sanity check	
	 	 my $output = DATA . "$_001.rdf";	
	 	 if (! -e $output or -s $output == 0) {	
	
	 	 	 # transform marcxml into mods	
	 	 	 my $source = $parser->parse_string($marcxml) or warn $!;	
	 	 	 my $style = $parser->parse_file(MARC2MODS) or warn $!;	
	 	 	 my $stylesheet = $xslt->parse_stylesheet($style) or warn $!;	
	 	 	 my $results = $stylesheet->transform($source) or warn $!;	
	 	 	 my $mods = $stylesheet->output_string($results);	
	 	
	 	 	 # transform mods into rdf	
	 	 	 print " RDF: $output\n";	
	 	 	 $source = $parser->parse_string($mods) or warn $!;	
	 	 	 my $style = $parser->parse_file(MODS2RDF) or warn $!;	
	 	 	 my $stylesheet = $xslt->parse_stylesheet($style) or warn $!;	
	 	 	 my $results = $stylesheet->transform($source) or warn $!;	
	 	 	 my $rdf = $stylesheet->output_string($results);	
	 	
	 	 	 &save($output, $rdf);	
	 	 	 	
	 	 }	
	 	 else { print " RDF: skipping\n" }	
	 	
	 	 # prettify	
	 	 print "\n";	
	 	 	
	 	 # increment and check	
	 	 $index++;	
	 	 last if ($index > MAXINDEX)	
	 	 	
	 }	
	
}	
	
# done	
exit;	
	
	
sub save {	
	
	 open F, ' > ' . shift or die $!;	

	 binmode(F, ':utf8');	
	 print F shift;	
	 close F;	
	 return;	
	
}	
	
	
�

11.c Dereference.pm - mod_perl module facilitate content negotiation (done)	
	
# Dereference.pm - Redirect user-agents based on value of URI.	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 7, 2013 - first investigations; based on Apache2::Alex::Dereference	
# January 7, 2014 - by default return HTML, not RDF	
	
	
# configure	
use constant PAGES => 'http://infomotions.com/sandbox/liam/pages/';	
use constant DATA => 'http://infomotions.com/sandbox/liam/data/';	
	
# require	
use Apache2::Const -compile => qw(OK);	
use CGI;	
use strict;	
	
# main	
sub handler {	
	
	 # initialize	
	 my $r = shift;	
	 my $cgi = CGI->new;	
	 my $id = substr($r->uri, length $r->location);	
	 	
	 # wants html	
	 if ($cgi->Accept('text/html')) {	
	 	
	 	 print $cgi->header(-status => '303 See Other', 	
	 	 -Location => PAGES . $id . '.html', 	
	 	 -Vary => 'Accept' , 	
	 	 "Content-Type" => 'text/html')	
	 	 	
	 }	
	
	 # check for rdf	
	 elsif ($cgi->Accept('application/rdf+xml')) {	
	 	
	 	 print $cgi->header(-status => '303 See Other', 	
	 	 -Location => DATA . $id . '.rdf', 	
	 	 -Vary => 'Accept', 	
	 	 "Content-Type" => 'application/rdf+xml')	
	
	 }	
	 	
	 # give them html, anyway 	
	 else {	
	 	
	 	 print $cgi->header(-status => '303 See Other', 	
	 	 -Location => PAGES . $id . '.html', 	
	 	 -Vary => 'Accept' , 	
	 	 "Content-Type" => 'text/html')	
	 	 	
	 }	
	 # done	
	 return Apache2::Const::OK;	

	
}	
	
1; # return true or die	
�

11.d store-make.pl - a Perl script to simply initialize an RDF triple store (done)	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 14, 2013 - after wrestling with wilson for most of the day	
	
	
# configure	
use constant ETC => '/disk01/www/html/main/sandbox/liam/etc/';	
	
# require	
use strict;	
use RDF::Redland;	
	
# sanity check	
my $db = $ARGV[0];	
if (! $db) {	
	
	 print "Usage: $0 <db>\n";	
	 exit;	
	 	
}	
	
# do the work; brain-dead	
my $etc = ETC;	
my $store = RDF::Redland::Storage->new('hashes', $db, "new='yes', hash-type='bdb', dir='$etc'");	
die "Unable to create store ($!)" unless $store;	
my $model = RDF::Redland::Model->new($store, '');	
die "Unable to create model ($!)" unless $model;	
	
# "save"	
$store = undef;	
$model = undef;	
	
# done	
exit;	
	
�

11.e store-add.pl - a Perl script to add items to an RDF triple store (done)	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 14, 2013 - after wrestling with wilson for most of the day	
	
	
# configure	
use constant ETC => '/disk01/www/html/main/sandbox/liam/etc/';	
	
# require	
use strict;	
use RDF::Redland;	
	
# sanity check #1 - command line arguments	
my $db = $ARGV[0];	
my $file = $ARGV[1];	
if (! $db or ! $file) {	
	
	 print "Usage: $0 <db> <file>\n";	
	 exit;	
	 	
}	
	
# echo	
warn "$file\n";	
	
# sanity check #2 - store exists	
die "Error: po2s file not found. Make a store?\n" if (! -e ETC . $db . '-po2s.db');	
die "Error: so2p file not found. Make a store?\n" if (! -e ETC . $db . '-so2p.db');	
die "Error: sp2o file not found. Make a store?\n" if (! -e ETC . $db . '-sp2o.db');	
	
# open the store	
my $etc = ETC;	
my $store = RDF::Redland::Storage->new('hashes', $db, "new='no', hash-type='bdb', dir='$etc'");	
die "Error: Unable to open store ($!)" unless $store;	
my $model = RDF::Redland::Model->new($store, '');	
die "Error: Unable to create model ($!)" unless $model;	
	
# sanity check #3 - file exists	
die "Error: $file not found.\n" if (! -e $file);	
	
# parse a file and add it to the store	
my $uri = RDF::Redland::URI->new("file:$file");	
my $parser = RDF::Redland::Parser->new('rdfxml', 'application/rdf+xml');	
die "Error: Failed to find parser ($!)\n" if (! $parser);	
my $stream = $parser->parse_as_stream($uri, $uri);	
my $count = 0;	
while (! $stream->end) {	
	
	 $model->add_statement($stream->current);	
	 $count++;	
	 $stream->next;	
	
}	
	
# echo the result	
#warn "Namespaces:\n";	

#my %namespaces = $parser->namespaces_seen;	
#while (my ($prefix, $uri) = each %namespaces) {	
#	
#	 warn " prefix: $prefix\n";	
#	 warn ' uri: ' . $uri->as_string . "\n";	
#	 warn "\n";	
#	
#}	
warn "Added $count statements\n";	
warn "\n";	
	
# "save"	
$store = undef;	
$model = undef;	
	
# done	
exit;	
	
�

11.f store-search.pl - Perl script to query a triple store (done)	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 14, 2013 - after wrestling with wilson for most of the day	
	
	
# configure	
use constant ETC => '/disk01/www/html/main/sandbox/liam/etc/';	
my %namespaces = (
	
 "crm" => "http://erlangen-crm.org/current/",	
 "dc" => "http://purl.org/dc/elements/1.1/",	
 "dcterms" => "http://purl.org/dc/terms/",	
 "event" => "http://purl.org/NET/c4dm/event.owl#",	
 "foaf" => "http://xmlns.com/foaf/0.1/",	
 "lode" => "http://linkedevents.org/ontology/",	
 "lvont" => "http://lexvo.org/ontology#",	
 "modsrdf" => "http://simile.mit.edu/2006/01/ontologies/mods3#",	
 "ore" => "http://www.openarchives.org/ore/terms/",	
 "owl" => "http://www.w3.org/2002/07/owl#",	
 "rdf" => "http://www.w3.org/1999/02/22-rdf-syntax-ns#",	
 "rdfs" => "http://www.w3.org/2000/01/rdf-schema#",	
 "role" => "http://simile.mit.edu/2006/01/roles#",	
 "skos" => "http://www.w3.org/2004/02/skos/core#",	
 "time" => "http://www.w3.org/2006/time#",	
 "timeline" => "http://purl.org/NET/c4dm/timeline.owl#",	
 "wgs84_pos" => "http://www.w3.org/2003/01/geo/wgs84_pos#"	
 	
);	
	
# require	
use strict;	
use RDF::Redland;	
	
# sanity check #1 - command line arguments	
my $db = $ARGV[0];	
my $query = $ARGV[1];	
if (! $db or ! $query) {	
	
	 print "Usage: $0 <db> <query>\n";	
	 exit;	
	 	
}	
	
# sanity check #2 - store exists	
die "Error: po2s file not found. Make a store?\n" if (! -e ETC . $db . '-po2s.db');	
die "Error: so2p file not found. Make a store?\n" if (! -e ETC . $db . '-so2p.db');	
die "Error: sp2o file not found. Make a store?\n" if (! -e ETC . $db . '-sp2o.db');	
	
# open the store	
my $etc = ETC;	
my $store = RDF::Redland::Storage->new('hashes', $db, "new='no', hash-type='bdb', dir='$etc'");	
die "Error: Unable to open store ($!)" unless $store;	
my $model = RDF::Redland::Model->new($store, '');	
die "Error: Unable to create model ($!)" unless $model;	
	
# search	

#my $sparql = RDF::Redland::Query->new("CONSTRUCT { ?a ?b ?c } WHERE { ?a ?b ?c }", undef, undef,
"sparql");	
my $sparql = RDF::Redland::Query->new("PREFIX modsrdf:
<http://simile.mit.edu/2006/01/ontologies/mods3#>\nSELECT ?a ?b ?c WHERE { ?a modsrdf:$query ?c }",
undef, undef, 'sparql');	
my $results = $model->query_execute($sparql);	
print $results->to_string;	
	
# done	
exit;	
	
�

11.g sparql.pl - a Perl-based, brain-dead, half-baked SPARQL endpoint (done)	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 15, 2013 - first investigations	
	
	
# require	
use CGI;	
use CGI::Carp qw(fatalsToBrowser);	
use RDF::Redland;	
use strict;	
	
# initialize	
my $cgi = CGI->new;	
my $query = $cgi->param('query');	
	
if (! $query) {	
	
	 print $cgi->header;	
	 print &home;	
	
}	
	
else {	
	
	 # open the store for business	
	 my $store = RDF::Redland::Storage->new('hashes', 'store', "new='no', hash-type='bdb',
dir='/disk01/www/html/main/sandbox/liam/etc'");	
	 my $model = RDF::Redland::Model->new($store, '');	
	
	 # search	
	 my $results = $model->query_execute(RDF::Redland::Query->new($query, undef, undef, 'sparql'));	
	
	 # return the results	
	 print $cgi->header(-type => 'application/xml');	
	 print $results->to_string;	
	
}	
	
# done	
exit;	
	
	
sub home {	
	
	 # return a home page	
	 return <<EOF	
<html>	
<head>	
<title>LiAM SPARQL Endpoint</title>	
</head>	
<body style='margin: 7%'>	
<h1>LiAM SPARQL Endpoint</h1>	
<p>This is a brain-dead and half-baked SPARQL endpoint to a subset of LiAM linked data. Enter a query, but
there is the disclaimer. Errors will probably happen because of SPARQL syntax errors. Remember, the
interface is brain-dead. Your milage will vary.</p>	
<form method='GET' action='./'>	

<textarea style='font-size: large' rows='5' cols='65' name='query' />	
SELECT ?p ?o	
WHERE { <http://infomotions.com/sandbox/liam/id/mum432> ?p ?o }	
ORDER BY ?p	
</textarea>
	
<input type='submit' value='Search' />	
</form>	
<p>Sample queries:</p>	
	
	 All the classes in the triple store - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+DISTINCT+%3Fo+WHERE+%7B+%3Fs+a+%3Fo+%7D+
ORDER+BY+%3Fo" target="_blank">SELECT DISTINCT ?o WHERE { ?s a ?o } ORDER BY ?o</code>	
	 All the properties in the triple store - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+DISTINCT+%3Fp+WHERE+%7B+%3Fs+%3Fp+%3Fo+%7D+
ORDER+BY+%3Fp" target="_blank">SELECT DISTINCT ?p WHERE { ?s ?p ?o } ORDER BY ?p</code>	
	 All the things things that are archival finding aids - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fs+WHERE+%7B+%3Fs+a+%3Chttp%3A%2F%2Fdata.
archiveshub.ac.uk%2Fdef%2FFindingAid%3E+%7D" target="_blank">SELECT ?s WHERE { ?s a
<http://data.archiveshub.ac.uk/def/FindingAid> }</code>	
	 Everything about a specific actionable URI (finding aid) - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fp+%3Fo+WHERE+%7B+%3Chttp%3A%2F%
2Finfomotions.com%2Fsandbox%2Fliam%2Fid%2Fmum432%3E+%3Fp+%3Fo+%7D+ORDER+BY+%3Fp" target="_blank">SELECT ?p
?o WHERE { <http://infomotions.com/sandbox/liam/id/mum432> ?p ?o } ORDER BY ?p</code>	
	 Ten things that are MARC records - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fs+WHERE+%7B+%3Fs+a+%3Chttp%3A%2F%
2Fsimile.mit.edu%2F2006%2F01%2Fontologies%2Fmods3%23Record%3E+%7D+LIMIT+10" target="_blank">SELECT ?s
WHERE { ?s a <http://simile.mit.edu/2006/01/ontologies/mods3#Record> } LIMIT 10</code>	
	 Everything about a specific actionable URI - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fp+%3Fo+WHERE+%7B+%3Chttp%3A%2F%
2Finfomotions.com%2Fsandbox%2Fliam%2Fid%2Fshumarc681792%3E+%3Fp+%3Fo+%7D+ORDER+BY+%3Fp"
target="_blank">SELECT ?p ?o WHERE { <http://infomotions.com/sandbox/liam/id/shumarc681792> ?p ?o }
ORDER BY ?p</code>	
	 One hundred things with titles - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fs+%3Fo+WHERE+%7B+%3Fs+%3Chttp%3A%2F%
2Fpurl.org%2Fdc%2Fterms%2Ftitle%3E+%3Fo+%7D+ORDER+BY+%3Fo+LIMIT+100" target="_blank">SELECT ?s ?o WHERE {
?s <http://purl.org/dc/terms/title> ?o } ORDER BY ?o LIMIT 100</code>	
	 One hundred things with creators - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fs+%3Fo+WHERE+%7B+%3Fs+%3Chttp%3A%2F%
2Fsimile.mit.edu%2F2006%2F01%2Froles%23creator%3E+%3Fo+%7D+ORDER+BY+%3Fo+LIMIT+100" target="_blank">SELECT
?s ?o WHERE { ?s <http://simile.mit.edu/2006/01/roles#creator> ?o } ORDER BY ?o LIMIT
100</code>	
	 One hundred things with names - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fs+%3Fo+WHERE+%7B+%3Fs+%3Chttp%3A%2F%
2Fxmlns.com%2Ffoaf%2F0.1%2Fname%3E+%3Fo+%7D+ORDER+BY+%3Fo+LIMIT+100" target="_blank">SELECT ?s ?o WHERE {
?s <http://xmlns.com/foaf/0.1/name> ?o } ORDER BY ?o LIMIT 100</code>	
	 One hundred things with notes - <code><a
href="http://infomotions.com/sandbox/liam/sparql/?query=SELECT+%3Fs+%3Fo+WHERE+%7B+%3Fs+%3Chttp%3A%2F%
2Fdata.archiveshub.ac.uk%2Fdef%2Fnote%3E+%3Fo+%7D+ORDER+BY+%3Fo+LIMIT+100" target="_blank">SELECT ?s ?o
WHERE { ?s <http://data.archiveshub.ac.uk/def/note> ?o } ORDER BY ?o LIMIT 100</code>	
	
<p>For more information about SPARQL, see:</p>	
	
	 SPARQL Query Language for RDF
from the W3C	
	 SPARQL from Wikipedia	
	
<p>Source code -- sparql.pl -- is

available online.</p>	
<hr />	
<p>	
Eric Lease Morgan
<eric_morgan\@infomotions.com>
	
March 5, 2014	
</p>	
</body>	
</html>	
EOF	
}	
	
�

11.h store-dump.pl - Perl script to output the content of store as RDF/XML (done)	
	
# Eric Lease Morgan <eric_morgan@infomotions.com>	
# December 14, 2013 - after wrestling with wilson for most of the day	
	
	
# configure	
use constant ETC => '/disk01/www/html/main/sandbox/liam/etc/';	
	
# require	
use strict;	
use RDF::Redland;	
	
# sanity check #1 - command line arguments	
my $db = $ARGV[0];	
if (! $db) {	
	
	 print "Usage: $0 <db>\n";	
	 exit;	
	 	
}	
	
# sanity check #2 - store exists	
die "Error: po2s file not found. Make a store?\n" if (! -e ETC . $db . '-po2s.db');	
die "Error: so2p file not found. Make a store?\n" if (! -e ETC . $db . '-so2p.db');	
die "Error: sp2o file not found. Make a store?\n" if (! -e ETC . $db . '-sp2o.db');	
	
# open the store	
my $etc = ETC;	
my $store = RDF::Redland::Storage->new('hashes', $db, "new='no', hash-type='bdb', dir='$etc'");	
die "Error: Unable to open store ($!)" unless $store;	
my $model = RDF::Redland::Model->new($store, '');	
die "Error: Unable to create model ($!)" unless $model;	
	
# do the work	
my $serializer = RDF::Redland::Serializer->new;	
print $serializer->serialize_model_to_string(RDF::Redland::URI->new, $model);	
	
# done	
exit;	
	
�

11 A question from a library school student	
	
In January of 2014 I received the following email message from a library school student. The questions
they asked were apropos to the Guide, so I thought I’d include my responseggt here, but the names have
been changed to protect the innocent.	
	
From: Eric Lease Morgan <emorgan@nd.edu>	
Subject: Re: RDF ontologies discussion on Code4Lib Listserv	
Date: January 21, 2014 at 9:36:36 PM EST	
	
> I'm writing you to ask you about your thoughts on implementing	
> these kinds of RDF descriptions for institutional collections.	
> Have you worked on a project that incorporated LD technologies	
> like these descriptions? What was that experience like? Also,	
> what kind of strategies have you used to implement these	
> strategies, for instance, was considerable buy-in from your	
> organization necessary, or were you able to spearhead it	
> relatively solo? In essence, what would it "cost" to really do	
> this?	
> 	
> I apologize for the mass of questions, especially over e-mail. My	
> only experience with ontology work has been theoretical, and I	
> haven't met any professionals in the field yet who have actually	
> used it. When I talk to my mentors about it, they are aware of it	
> from an academic standpoint but are wary of it due these	
> questions of cost and resource allocation, or confusion that it	
> doesn't provide anything new for users. My final project was to	
> build an ontology to describe some sort of resource and I settled	
> on building a vocabulary to describe digital facsimiles and their	
> physical artifacts, but I have yet to actually implement or use	
> any of it. Nor have I had a chance yet to really use any	
> preexisting vocabularies. So I've found myself in a slightly	
> frustrating position where I've studied this from an academic	
> perspective and seek to incorporate it in my GLAM work, but I	
> lack the hands-on opportunity to play around with it.	
> 	
> --	
> MLIS Candidate	
	
Dear MLS Candidate, no problem, really, but I don’t know how much help I will really be.	
	
The whole RDF / Semantic Web thing started more than ten years ago. The idea was to expose RDF/XML, allow
robots to crawl these files, amass the data, and discover new knowledge — relationships — underneath. Many
in the library profession thought this was science fiction and/or the sure pathway to professional
obsolescence. Needless to say, it didn’t get very far. A few years ago the idea of linked data was
articulated, and it a nutshell it outlined how to make various flavors of serialized RDF available via an
HTTP technique called content negotiation. This was when things like Turtle, N3, the idea of triple
stores, maybe SPARQL, and other things came to fruition. This time the idea of linked data was more real
and got a bit more traction, but it is still not main stream.	
	
I have very little experience putting the idea of RDF and linked data into practice. A long time ago I
created RDF versions of my Alex Catalogue and implemented a content negotiation tool against it. The
Catalogue was not a part of any institution other than myself. When I saw the call for the LiAM Guidebook
I applied and got the “job” because of my Alex Catalogue experiences as well as some experience with a
thing colloquially called The Catholic Portal which contains content from EAD files.	
	
I knew this previously, but linked data is all about URIs and ontologies. Minting URIs is not difficult,

but instead of rolling your own, it is better to use the URIs of others, such as the URIs in DBpedia,
GeoNames, VIAF, etc. The ontologies used to create relationships between the URIs are difficult to
identify, articulate, and/or use consistently. They are manifestations of human language, and human
language is ambiguous. Trying to implement the nuances of human language in computer “sentences” called
RDF triples is only an approximation at best. I sometimes wonder if the whole thing can really come to
fruition. I look at OAI-PMH. It had the same goals, but it was finally called not a success because it was
too difficult to implement. The Semantic Web may follow suit.	
	
That said, it is not too difficult to make the metadata of just about any library or archive available as
linked data. The technology is inexpensive and already there. The implementation will not necessarily
implement best practices, but it will not expose incorrect nor invalid data, just data that is not the
best. Assuming the library has MARC or EAD files, it is possible to use XSL to transform the metadata into
RDF/XML. HTML and RDF/XML versions of the metadata can then be saved on an HTTP file system and
disseminated either to humans or robots through content negotiation. Once a library or archive gets this
far they can then either improve their MARC or EAD files to include more URIs, they can improve their XSLT
to take better advantage of shared ontologies, and/or they can dump MARC and EAD all together and learn to
expose linked data directly from (relational) databases. It is an iterative process which is never
completed. 	
	
Nothing new to users? Ah, that is the rub and a sticking point with the linked data / Semantic Web thing.
It is a sort of chicken & egg problem. “Show me the cool application that can be created if I expose my
metadata as linked data”, say some people. On the other hand, “I can not create the cool application until
there is a critical mass of available content.” Despite this issue, things are happening for readers,
namely mash-ups. (I don’t like the word “users”.) Do a search in Facebook for the Athens. You will get a
cool looking Web page describing Athens, who has been there, etc. This was created by assembling metadata
from a host of different places (all puns intended), and one of those places were linked data
repositories. Do a search in Google for the same thing. Instead of just bringing back a list of links,
Google presents you with real content, again, amassed through various APIs including linked data. Visit
VIAF and search for a well-known author. Navigate the result an you will maybe end up at WorldCat
identities where all sorts of interesting information about an author, who they wrote with, what they
wrote, and where is displayed. All of this is rooted in linked data and Web Services computing techniques.
This is where the benefit comes. Library and archival metadata will become part of these mash-up — called
“named graphs” — driving readers to library and archival websites. Linked data can become part of
Wikipedia. It can be used to enrich descriptions of people in authority lists, gazetteers, etc.	
	
What is the cost? Good question. Time is the biggest expense. If a person knows what they are doing, then
a robust set of linked data could be exposed in less than a month, but in order to get that far many
people need to contribute. Systems types to get the data out of content management systems as well as set
up HTTP servers. Programmers will be needed to do the transformations. Catalogers will be needed to assist
in the interpretation of AACR2 cataloging practices, etc. It will take a village to do the work, and that
doesn’t even count convincing people this is a good idea.	
	
Your frustration is not uncommon. Often times if there is not a real world problem to solve, learning
anything new when it comes to computers is difficult. I took BASIC computer programming three times before
anything sunk in, and it only sunk in when I needed to calculate how much money I was earning as a taxi
driver. 	
	
Try implementing one of your passions. Do you collect anything? Baseball cards? Flowers? Books? Records?
Music? Art? Is there something in your employer’s special collections of interest to you? Find something
of interest to you. For simplicity’s sake, use a database to describe each item in the collection making
sure each record in our database includes a unique key field. Identify one or more ontologies (others as
well as rolling your own) whose properties match closely the names of your fields in your database. Write
a program against your database to create static HTML pages. Put the pages on the Web. Write a program
against your database to create static RDF/XML (or some other RDF serialization). Put the pages on the
Web. Implement a content negotiation script that takes the keys to your database’s fields as input and
redirects HTTP user agents to either the HTML or RDF. Submit the root of your linked data implementation
to Datahub.io. Ta da! You have successfully implemented linked data and learned a whole lot along the way.

Once you get that far you can take what you have learned and apply it in a bigger and better way for a
larger set of data. 	
	
On one hand the process is not difficult. It is a matter of repurposing the already existing skills of
people who work in cultural heritage institutions. On the other hand, change in the ways things are done
is difficult (but not as difficult in the what of what is done). The change is difficult to balance
existing priorities. 	
	
Exposing library and archival content as linked data represents a different working style, but the end
result is the same — making the content of our collections available for use and understanding. 	
	
HTH.	
	
—	
	
Eric Morgan	
�

