
This text, DBMs and Web Delivery, compares and
contrasts three database applications and describes
how their content can be made available on the Web.

Filemaker

Filemaker is a cross-platform, desktop, relational
database application. The creation of tables is
simplistic and the process of creating relationships
between them relatively straight forward. If you move or
rename the flat tables, then relations will break causing
you to recreate the relations.

To say Filemaker is a cross-platform application is a
tiny misnomer. Filemaker is supported under various
Windows platforms (95, 98, and NT) as well as just
about any Macintosh. There is a single difference
between Windows and Macintosh versions, and that
difference is AppleScript. It allows you to write
programs querying Filemaker data and report on it's
content. This is great when you want to create
something other than simple tab-delimited or
rudimentary HTML output from your database. Like
many database applications, Filemaker's internal
scripting language supports various string, numeric, and
date functions for dynamically populating fields or
reports.

Besides being extremely easy to use, Filemaker natively
supports to essential Internet protocols for effectively
providing access to your data via the Web: simple mail
transfer protocol (SMTP) and hypertext transfer protocol
(HTTP). This means Filemaker can be used as a user
agent for sending email and it comes with a built-in
Web server.

The implementation of both of these services relies on
your ability to write HTML files in Filemaker's
specialized mark-up language called Claris Dynamic
Markup Language (CDML). CDML is really a server-side
include sort of language. Looking a lot like HTML, it
allows you to embed commands for adding, editing,
deleting, and querying items in your database. As these
commands are read by the Filemaker extension
enabling HTTP serving they are interpreted and
executed against your data. After results are obtained
they are formatted into HTML and sent back to the Web
browser initiating them in the first place.

CDML's real power, like all other server-side include
extensions, is the ability to display dynamically created
HTML forms, take the user-supplied input from those
forms, and do some processing against the database.
For example, you could create a staff directory
database and then a CDML file/form listing every staff
member's name in a pop-up menu. After selecting an
item from the pop-up menu and submitting the form,
Filemaker could return more specific information about
the staff member including things like telephone

number, email address, URL of home page,
department, etc. Furthermore, this specific display
could be a form itself allowing the authorized user to
edit the information as necessary.

Microsoft Access

Microsoft Access is the most popular relational
database application here because it is a Microsoft
product and it comes bundled with Microsoft's Office
suite. Access is more than capable of handling many
of your database needs and combined with Microsoft's
free Personal Web Server and a knowledge of the
Active Server Pages scripting language you can make
the content of your Access database(s) available on the
Web.

Access has a number of very nice features when
compared to Filemaker or MySQL. For one, multiple
tables of Access databases are saved in a single file.
This makes it more difficult to break your database's
relations by simply moving the database file from one
hard disk location to another. Similarly, all of Access's
queries, forms, reports, and scripts are saved in the
same file. The queries are graphically created SQL
queries. The forms are database layouts made for each
data-entry and querying. Reports are printed outputs of
your data. The scripts are VBA (Visual Basic for
Applications) modules providing the usual conditional
tests, numeric and sting functions, and interfaces with
outside applications and the operating system. Finally,
Access's database structure reporting mechanisms
excel. It is easy to create the standard illustrations
describing the databases' structure and database
dictionary. Using these functions greatly accelerates
technically documenting your database(s) when
compared to writing these documents by hand.

Making your Access database content available on the
Web is best done through the combination of user-
written Active Server Pages (ASP) and an ASP-capable
HTTP server. True, Access can export datasets in
HTML or rudimentary ASP but it is doubtful you will
find the results acceptable because you will end up
constantly tweaking the code Access creates and/or the
code it creates will be dynamic in only the simplest
sense. You are much better writing your own ASP in
order to take complete control of the process. Active
Server Pages is a server-side include language similar
to but more functional than CDML. By inserting special
ASP tags in your HTML pages and making sure those
pages are passed through an ASP knowledgeable
server, the result is dynamically created content.

Microsoft Access is an exceptional database
application. It could easily serve as a platform hosting
multiple library-related databases. Its primary strength
that it is a Microsoft application making it easily
integrateable with other Microsoft application. This

DBMs and Web Delivery
(A more complete version of this text is available at http://www.lib.ncsu.edu/staff/morgan/dbms-and-web-delivery/.)

also means it is upwards compatible with larger scale
applications like Microsoft SQL Server and/or Internet
Information Server. The down side of Access is that it is
a Windows-only application, and making your data
available on the Web requires Microsoft products and a
knowledge of ASP.

MySQL

MySQL is a relational database application running on
Unix and Windows computers. The Unix version is
"open source" and comes with no licensing fees as
long as you do not ask for technical support or you do
not sell a product requiring MySQL. If you want
technical support from the developers, then there is a
fee based on a sliding scale. There is also a licensing
fee associated with the Windows version of the
application. MySQL seems to be the growing favorite in
the Internet community.

What MySQL lacks in the user interface department it
more than makes up for in functionality and scalabilty.
It handles millions of records, supports the majority of
SQL functions as well as auto incrementable, variable
length, and binary (blob) fields. More importantly,
MySQL supports an application programming interface
(API) for C, Perl, and PHP.

MySQL sports a minimalistic user interface and a
number of programming interfaces. The user interface
simply takes its input from a command line. Commands
are standard Structured Query Language (SQL)
statements: create, use, insert, select, delete, etc.
While MySQL supports SQL, it does not support some of
the features of its more robust relational database
cousins like Sybase or Oracle. Specifically, MySQL
does not support stored procedures, rollbacks, or
triggers. According to the developers, the most
important characteristic of MySQL is speed and these
currently unsupported features, if implemented, will
diminish its speed.

Command line interfaces are not for everybody and
using the APIs supported by MySQL, developers can
create applications taking advantage of MySQL and
reducing the need to know or understand SQL. The
more popular interfaces are C, Perl, and PHP. I have
never used the C nor PHP interfaces, but the Perl
interface (DBI::DBD for Msql-Mysql) provides all the
necessary functionality for creating and maintaining
databases.

OBDC

Quite possibly the best solution for putting databases on
the Web is not through the database application itself,
but through a protocol called Open Database
Connectivity (ODBC). ODBC is yet another client server
model of computing, and implements an SQL query-
results transaction over a network. Essentially a
database is set up as an ODBC "data source" allowing it
to be queried. The data source acts as the server in a
client/server computing model. A client formulates an
SQL query and passes it through an ODBC "driver". The

driver sends to the query on to the data source, waits for
the reply, and finally returns the reply back to the
client.

Access, Filemaker, and MySQL can act as servers, and
scripting languages like Perl, PHP, or commercial
programs like Allaire's ColdFusion or Blue World's Lasso
can be used to query the databases. This model is
more scalable than many of other techniques
described in the previous sections since your ODBC-
enabled scripts are oblivious to the databases being
queried; the scripts only know about the driver.
Therefore, your scripts could stay the same but your
databases could move or your data could be migrated
to a larger (or smaller) engines.

Conclusion: Databases and libraries

There seems to be no concrete formula for helping you
decide what combination of database engines and
scripting languages you should implement for making
your data available on the Web. Most of the time your
decisions will be made for you because you will be
limited by particular pieces of hardware and software at
your disposal. Even when you do have choices, those
choices are hard to make. The largest of database
applications such as Oracle or Sybase (often termed
"enterprize solutions") will handle any database need
but the administrative overhead may be more than you
can handle. Desktop applications are easy to use as
well as get up and running, but their functionality is
limited by the number of records they can easily
support as well as the number of simultaneous users.

Libraries are becoming more and more about access
(no puns intended) and less and less about storage.
People can get their own information and more often
than not this information does not necessarily come
from a library. In order to provide access to information
libraries routinely create lists of things. These lists are
organized lists -- they are usually classified with one or
more subjects describing the "aboutness" of each item.
Using computers, organized lists are best implemented
as relational databases.

It behooves librarians to learn and become experts in
relational database technology so they (we) can take
advantage of the flexibility and particular features of
computerized lists. Computerized lists can be updated
and copied easily, sorted and re-ordered, limited to
subsets of lists, and incorporated into other data formats
(ie. word processors, spreadsheets, charts/graphs, etc.)
Combined with globally networked computers -- the
Internet -- these same lists can be tranfered quickly and
flawlessly from one place to another. This process is
much a part of librarianship. It is akin to what we have
described our role in society to be. Therefore it is
appropriate for the us to learn how to use these tools
effectively. Otherwise we will be doing our jobs in a
manner than is less than professional.

Eric Lease Morgan, NCSU Libraries
http://www.lib.ncsu.edu/staff/morgan/

September 24, 1999

